دورية أكاديمية

A mountable toilet system for personalized health monitoring via the analysis of excreta.

التفاصيل البيبلوغرافية
العنوان: A mountable toilet system for personalized health monitoring via the analysis of excreta.
المؤلفون: Park SM; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.; Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA., Won DD; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.; Department of Surgery, Seoul Song Do Hospital, Seoul, Republic of Korea.; Cancer Immunology Laboratory, Seoul, Seoul Song Do Hospital, Republic of Korea., Lee BJ; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.; Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA., Escobedo D; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA., Esteva A; Salesforce Research, Palo Alto, CA, USA., Aalipour A; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.; Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA., Ge TJ; Department of Urology, Stanford University School of Medicine, Stanford, CA, USA., Kim JH; Department of Surgery, Seoul Song Do Hospital, Seoul, Republic of Korea., Suh S; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA., Choi EH; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA., Lozano AX; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada., Yao C; Department of Electrical Engineering, Stanford University, Stanford, CA, USA., Bodapati S; Department of Bioengineering, Stanford University, Stanford, CA, USA., Achterberg FB; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.; Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.; Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands., Kim J; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.; Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.; Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea., Park H; College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea., Choi Y; College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea., Kim WJ; College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea., Yu JH; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.; Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA., Bhatt AM; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA., Lee JK; Department of Surgery, Seoul Song Do Hospital, Seoul, Republic of Korea.; Cancer Immunology Laboratory, Seoul, Seoul Song Do Hospital, Republic of Korea., Spitler R; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.; Precision Health and Integrated Diagnostic Center (PHIND), Stanford University School of Medicine, Palo Alto, CA, USA., Wang SX; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.; Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA., Gambhir SS; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA. sgambhir@stanford.edu.; Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA. sgambhir@stanford.edu.; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA. sgambhir@stanford.edu.; Department of Bioengineering, Stanford University, Stanford, CA, USA. sgambhir@stanford.edu.; Precision Health and Integrated Diagnostic Center (PHIND), Stanford University School of Medicine, Palo Alto, CA, USA. sgambhir@stanford.edu.; Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA. sgambhir@stanford.edu.
المصدر: Nature biomedical engineering [Nat Biomed Eng] 2020 Jun; Vol. 4 (6), pp. 624-635. Date of Electronic Publication: 2020 Apr 06.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: England NLM ID: 101696896 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2157-846X (Electronic) Linking ISSN: 2157846X NLM ISO Abbreviation: Nat Biomed Eng Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Springer Nature
Original Publication: [London] : Macmillan Publishers Limited, [2016]-
مواضيع طبية MeSH: Bathroom Equipment* , Equipment Design*, Monitoring, Physiologic/*instrumentation , Monitoring, Physiologic/*methods, Adult ; Deep Learning ; Feces/chemistry ; Female ; Humans ; Male ; Signal Processing, Computer-Assisted ; Software ; Urine/chemistry ; User-Computer Interface
مستخلص: Technologies for the longitudinal monitoring of a person's health are poorly integrated with clinical workflows, and have rarely produced actionable biometric data for healthcare providers. Here, we describe easily deployable hardware and software for the long-term analysis of a user's excreta through data collection and models of human health. The 'smart' toilet, which is self-contained and operates autonomously by leveraging pressure and motion sensors, analyses the user's urine using a standard-of-care colorimetric assay that traces red-green-blue values from images of urinalysis strips, calculates the flow rate and volume of urine using computer vision as a uroflowmeter, and classifies stool according to the Bristol stool form scale using deep learning, with performance that is comparable to the performance of trained medical personnel. Each user of the toilet is identified through their fingerprint and the distinctive features of their anoderm, and the data are securely stored and analysed in an encrypted cloud server. The toilet may find uses in the screening, diagnosis and longitudinal monitoring of specific patient populations.
التعليقات: Erratum in: Nat Biomed Eng. 2020 May 7;:. (PMID: 32382068)
Comment in: Nat Rev Gastroenterol Hepatol. 2020 Aug;17(8):453-454. (PMID: 32483351)
Comment in: Nat Biomed Eng. 2020 Jun;4(6):581-582. (PMID: 32533122)
References: Porche, D. J. Precision medicine initiative. Am. J. Mens Health 9, 177 (2015). (PMID: 25759367)
Ashley, E. A. The precision medicine initiative: a new national effort. JAMA 313, 2119–2120 (2015). (PMID: 25928209)
Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015). (PMID: 2563534725635347)
What is precision medicine? Genetics Home Reference https://ghr.nlm.nih.gov/primer/precisionmedicine/definition (2020).
Gambhir, S. S., Ge, T. J., Vermesh, O. & Spitler, R. Toward achieving precision health. Sci. Transl. Med. 10, eaao3612 (2018). (PMID: 294911865985668)
Blackwell, D. L., Lucas, J. W. & Clarke, T. C. Summary health statistics for U.S. adults: national health interview survey, 2012. Vital Health Stat. 10, 1–161 (2014).
Aalipour, A. et al. Deactivated CRISPR associated protein 9 for minor-allele enrichment in cell-free DNA. Clin. Chem. 64, 307–316 (2018). (PMID: 29038154)
Park, S.-m et al. Molecular profiling of single circulating tumor cells from lung cancer patients. Proc. Natl Acad. Sci. USA 113, E8379–E8386 (2016). (PMID: 279566145206556)
Krilaviciute, A. et al. Detection of cancer through exhaled breath: a systematic review. Oncotarget 6, 38643–38657 (2015). (PMID: 264403124770726)
Peng, G. et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 103, 542–551 (2010). (PMID: 206480152939793)
Hong, Y. J. et al. Multifunctional wearable system that integrates sweat‐based sensing and vital‐sign monitoring to estimate pre‐/post‐exercise glucose levels. Adv. Funct. Mater. 28, 1805754 (2018).
Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019). (PMID: 307464776357758)
Lee, J.-R., Choi, J., Shultz, T. O. & Wang, S. X. Small molecule detection in saliva facilitates portable tests of marijuana abuse. Anal. Chem. 88, 7457–7461 (2016). (PMID: 27434697)
Kim, J. et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 1632–1636 (2014). (PMID: 24496180)
Harpole, M., Davis, J. & Espina, V. Current state of the art for enhancing urine biomarker discovery. Expert Rev. Proteom. 13, 609–626 (2016).
Decramer, S. et al. Urine in clinical proteomics. Mol. Cell. Proteom. 7, 1850–1862 (2008).
Davies, R. J., Miller, R. & Coleman, N. Colorectal cancer screening: prospects for molecular stool analysis. Nat. Rev. Cancer 5, 199–209 (2005). (PMID: 15738983)
Gisbert, J. P., de la Morena, F. & Abraira, V. Accuracy of monoclonal stool antigen test for the diagnosis of H. pylori infection: a systematic review and meta-analysis. Am. J. Gastroenterol. 101, 1921–1930 (2006). (PMID: 16780557)
Warren, A. D., Kwong, G. A., Wood, D. K., Lin, K. Y. & Bhatia, S. N. Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl Acad. Sci. USA 111, 3671–3676 (2014). (PMID: 245674043956200)
Lin, K. Y., Kwong, G. A., Warren, A. D., Wood, D. K. & Bhatia, S. N. Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano 7, 9001–9009 (2013). (PMID: 240158093807694)
Graff, L. A Handbook of Routine Urinalysis (Lippincott, 1983).
Simerville, J. A., Maxted, W. C. & Pahira, J. J. Urinalysis: a comprehensive review. Am. Fam. Physician 71, 1153–1162 (2005). (PMID: 15791892)
Schäfer, W. et al. Good urodynamic practices: uroflowmetry, filling cystometry, and pressure‐flow studies. Neurourol. Urodyn. 21, 261–274 (2002). (PMID: 11948720)
Dabhoiwala, N., Osawa, D., Lim, A. T. L. & Abrams, P. The ICS-‘BPH’ study: uroflowmetry, lower urinary tract symptoms and bladder outlet obstruction. Br. J. Urol. 82, 619–623 (1998). (PMID: 9839573)
Jørgensen, J. B., Jensen, K. E., Bille‐Brahe, N. & Mogensen, P. Uroflowmetry in asymptomatic elderly males. BJU Int. 58, 390–395 (1986).
El Din, K. E., Kiemeney, L., De Wildt, M., Debruyne, F. & de La Rosette, J. Correlation between uroflowmetry, prostate volume, postvoid residue, and lower urinary tract symptoms as measured by the International Prostate Symptom Score. Urology 48, 393–397 (1996).
Markland, A. D. et al. Association of low dietary intake of fiber and liquids with constipation: evidence from the National Health and Nutrition Examination Survey. Am. J. Gastroenterol. 108, 796–803 (2013). (PMID: 235673523786707)
Li, B. R. et al. Risk factors for steatorrhea in chronic pancreatitis: a cohort of 2,153 patients. Sci. Rep. 6, 21381 (2016). (PMID: 268772484753434)
Johnson, C. D. et al. Qualitative assessment of the symptoms and impact of pancreatic exocrine insufficiency (PEI) to inform the development of a patient-reported outcome (PRO) instrument. Patient 10, 615–628 (2017). (PMID: 283320325605612)
Parekh, D. & Natarajan, S. Surgical management of chronic pancreatitis. Indian J. Surg. 77, 453–469 (2015). (PMID: 267222114689714)
Shandro, B. M., Nagarajah, R. & Poullis, A. Challenges in the management of pancreatic exocrine insufficiency. World J. Gastrointest. Pharm. Ther. 9, 39–46 (2018).
de la Iglesia-Garcia, D. et al. Efficacy of pancreatic enzyme replacement therapy in chronic pancreatitis: systematic review and meta-analysis. Gut 66, 1354–1355 (2017). (PMID: 27941156)
Park, H. H., Kim, H. Y., Jung, S. E., Lee, S. C. & Park, K. W. Long-term functional outcomes of PPPD in children—nutritional status, pancreatic function, GI function and QOL. J. Pediatr. Surg. 51, 398–402 (2016). (PMID: 26382285)
D’haens, G. et al. Fecal calprotectin is a surrogate marker for endoscopic lesions in inflammatory bowel disease. Inflamm. Bowel Dis. 18, 2218–2224 (2012). (PMID: 22344983)
Van Rheenen, P. F., Van de Vijver, E. & Fidler, V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. Brit. Med. J. 341, c3369 (2010). (PMID: 206343462904879)
Schoepfer, A. M. et al. Fecal calprotectin correlates more closely with the Simple Endoscopic Score for Crohn’s disease (SES-CD) than CRP, blood leukocytes, and the CDAI. Am. J. Gastroenterol. 105, 162–169 (2010). (PMID: 19755969)
Imperiale, T. F. et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 370, 1287–1297 (2014). (PMID: 24645800)
Ahlquist, D. A. et al. Next-generation stool DNA test accurately detects colorectal cancer and large adenomas. Gastroenterology 142, 248–256 (2012). (PMID: 22062357)
Lane, M. M., Czyzewski, D. I., Chumpitazi, B. P. & Shulman, R. J. Reliability and validity of a modified Bristol Stool Form Scale for children. J. Pediatr. 159, 437–441 (2011). (PMID: 214895573741451)
Candy, D. & Edwards, D. The management of chronic constipation. Curr. Paediatr. 13, 101–106 (2003).
Halmos, E. P. et al. Inaccuracy of patient-reported descriptions of and satisfaction with bowel actions in irritable bowel syndrome. Neurogastroenterol. Motil. 30, e13187 (2018).
Mínguez, P. M. & Benages, M. A. The Bristol scale—a useful system to assess stool form? Rev. Esp. Enferm. Dig. 101, 305–311 (2009).
Ikenaga, T., Shigematsu, T., Kusumoto, A., Yamamoto, K. & Yada, M. Toilet device with health examination system. US patent US4961431A (1990).
Ikenaga, T., Shigematsu, T., Yada, M., Makita, S. & Kitaura, H. Toilet with urine constituent measuring device. US patent US4962550A (1990).
Nakayama, C. et al. Toilet-bowl-mounted urinalysis unit. US patent US5730149A (1998).
Voswinckel, P. A marvel of colors and ingredients. The story of urine test strip. Kidney Int. Suppl. 47, S3–S7 (1994). (PMID: 7869669)
Yang, P. J., Pham, J., Choo, J. & Hu, D. L. Duration of urination does not change with body size. Proc. Natl Acad. Sci. USA 111, 11932–11937 (2014). (PMID: 249694204143032)
Haylen, B. T., Ashby, D., Sutherst, J. R., Frazer, M. I. & West, C. R. Maximum and average urine flow rates in normal male and female populations—the Liverpool nomograms. Br. J. Urol. 64, 30–38 (1989). (PMID: 2765766)
Kim, J. H. et al. Terminal dribbling in male patients with lower urinary tract symptoms: relationship with international prostate symptom score and with intravesical prostatic protrusion. BMC Urol. 15, 89 (2015). (PMID: 263199374552983)
Jurman, G., Riccadonna, S. & Furlanello, C. A comparison of MCC and CEN error measures in multi-class prediction. PLoS ONE 7, e41882 (2012). (PMID: 229051113414515)
Gorodkin, J. Comparing two K-category assignments by a K-category correlation coefficient. Comput. Biol. Chem. 28, 367–374 (2004). (PMID: 15556477)
Wei, J.-M., Yuan, X.-J., Hu, Q.-H. & Wang, S.-Q. A novel measure for evaluating classifiers. Expert Syst. Appl. 37, 3799–3809 (2010).
Blake, M., Raker, J. & Whelan, K. Validity and reliability of the Bristol stool form scale in healthy adults and patients with diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 44, 693–703 (2016). (PMID: 27492648)
Krishnasamy, P., Belongie, S. & Kriegman, D. Wet fingerprint recognition: challenges and opportunities. In Proc. 2011 International Joint Conference on Biometrics 1–7 (IEEE, 2011).
Gonzalez, R. C. & Woods, R. E. Digital Image Processing (Addison-Wesley, 1992).
Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). (PMID: 15376593)
Lewis, S. J. & Heaton, K. W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 32, 920–924 (1997). (PMID: 9299672)
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
von Münch, E. & Milosevic, D. Qualitative Survey on Squatting Toilets and Anal Cleansing with Water with a Special Emphasis on Muslim and Buddhist Countries by Using the SuSanA Discussion Forum (Ostella Consulting, 2015).
Krhut, J. et al. Comparison between uroflowmetry and sonouroflowmetry in recording of urinary flow in healthy men. Int J. Urol. 22, 761–765 (2015). (PMID: 25988672)
Yang, P. J., LaMarca, M., Kaminski, C., Chu, D. I. & Hu, D. L. Hydrodynamics of defecation. Soft Matter 13, 4960–4970 (2017). (PMID: 28470247)
Van Rossum, L. G. et al. Random comparison of guaiac and immunochemical fecal occult blood tests for colorectal cancer in a screening population. Gastroenterology 135, 82–90 (2008). (PMID: 18482589)
Morikawa, T. et al. A comparison of the immunochemical fecal occult blood test and total colonoscopy in the asymptomatic population. Gastroenterology 129, 422–428 (2005). (PMID: 16083699)
Guittet, L. et al. Comparison of a guaiac based and an immunochemical faecal occult blood test in screening for colorectal cancer in a general average risk population. Gut 56, 210–214 (2007). (PMID: 16891354)
Raman, M. et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 11, 868–875 (2013). (PMID: 23454028)
Damman, C. J., Miller, S. I., Surawicz, C. M. & Zisman, T. L. The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am. J. Gastroenterol. 107, 1452–1459 (2012). (PMID: 23034604)
Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010). (PMID: 19901833)
Chang, J. Y. et al. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile—associated diarrhea. J. Infect. Dis. 197, 435–438 (2008). (PMID: 18199029)
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Proc. 25th International Conference on Neural Information Processing Systems — Volume 1 1097–1105 (Curran Associates, 2012).
Abadi, M. et al. Tensorflow: a system for large-scale machine learning. In Proc. 12th USENIX Symposium on Operating Systems Design and Implementation 265–283 (USENIX, 2016).
معلومات مُعتمدة: T32 CA118681 United States CA NCI NIH HHS; T32 GM007250 United States GM NIGMS NIH HHS; UL1 TR001085 United States TR NCATS NIH HHS; UL1 TR003142 United States TR NCATS NIH HHS
تواريخ الأحداث: Date Created: 20200407 Date Completed: 20201112 Latest Revision: 20220304
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7377213
DOI: 10.1038/s41551-020-0534-9
PMID: 32251391
قاعدة البيانات: MEDLINE
الوصف
تدمد:2157-846X
DOI:10.1038/s41551-020-0534-9