دورية أكاديمية

Dynamics of oligomer populations formed during the aggregation of Alzheimer's Aβ42 peptide.

التفاصيل البيبلوغرافية
العنوان: Dynamics of oligomer populations formed during the aggregation of Alzheimer's Aβ42 peptide.
المؤلفون: Michaels TCT; Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK.; Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA., Šarić A; Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK.; MRC Laboratory for Molecular Cell Biology, University College London, London, UK., Curk S; Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK.; MRC Laboratory for Molecular Cell Biology, University College London, London, UK.; Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia., Bernfur K; Department of Chemistry, Division for Biochemistry and Structural Biology, Lund University, Lund, Sweden., Arosio P; Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland., Meisl G; Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK., Dear AJ; Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK.; Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA., Cohen SIA; Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK., Dobson CM; Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK., Vendruscolo M; Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK. mv245@cam.ac.uk., Linse S; Department of Chemistry, Division for Biochemistry and Structural Biology, Lund University, Lund, Sweden. Sara.Linse@biochemistry.lu.se., Knowles TPJ; Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK. tpjk2@cam.ac.uk.; Cavendish Laboratory, University of Cambridge, Cambridge, UK. tpjk2@cam.ac.uk.
المصدر: Nature chemistry [Nat Chem] 2020 May; Vol. 12 (5), pp. 445-451. Date of Electronic Publication: 2020 Apr 13.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101499734 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1755-4349 (Electronic) Linking ISSN: 17554330 NLM ISO Abbreviation: Nat Chem Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group
مواضيع طبية MeSH: Alzheimer Disease/*metabolism , Amyloid beta-Peptides/*metabolism , Peptide Fragments/*metabolism, Computer Simulation ; Humans ; Kinetics ; Models, Molecular ; Peptide Fragments/chemistry ; Protein Conformation ; Protein Folding ; Protein Multimerization
مستخلص: Oligomeric species populated during the aggregation of the Aβ42 peptide have been identified as potent cytotoxins linked to Alzheimer's disease, but the fundamental molecular pathways that control their dynamics have yet to be elucidated. By developing a general approach that combines theory, experiment and simulation, we reveal, in molecular detail, the mechanisms of Aβ42 oligomer dynamics during amyloid fibril formation. Even though all mature amyloid fibrils must originate as oligomers, we found that most Aβ42 oligomers dissociate into their monomeric precursors without forming new fibrils. Only a minority of oligomers converts into fibrillar structures. Moreover, the heterogeneous ensemble of oligomeric species interconverts on timescales comparable to those of aggregation. Our results identify fundamentally new steps that could be targeted by therapeutic interventions designed to combat protein misfolding diseases.
التعليقات: Erratum in: Nat Chem. 2020 Apr 17;:. (PMID: 32303714)
References: Alzheimer’s Association. 2014 Alzheimer’s disease facts and figures. Alzheimers Dement. 10, e47–e92 (2014).
Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 49–60 (2003). (PMID: 10.1038/nrn1007)
Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003). (PMID: 10.1038/nature02261)
Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 27 (2017). (PMID: 10.1146/annurev-biochem-061516-045115)
Knowles, T. P. J., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014). (PMID: 10.1038/nrm3810)
Selkoe, D. J. Folding proteins in fatal ways. Nature 426, 900–904 (2003). (PMID: 10.1038/nature02264)
Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002). (PMID: 10.1126/science.1072994)
Petkova, A. T. Self-propagating, molecular-level polymorphism in Alzheimer’s amyloid fibrils. Science 307, 262–265 (2005). (PMID: 10.1126/science.1105850)
Campioni, S. et al. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 6, 140–147 (2010). (PMID: 10.1038/nchembio.283)
Qiang, W., Yau, W.-M., Lu, J.-X., Collinge, J. & Tycko, R. Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes. Nature 541, 217–221 (2017). (PMID: 10.1038/nature20814)
Cremades, N. et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 149, 1048–1059 (2012). (PMID: 10.1016/j.cell.2012.03.037)
Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 15, 349–357 (2012). (PMID: 10.1038/nn.3028)
Catalano, S. M. et al. The role of amyloid-beta derived diffusible ligands (ADDLs) in Alzheimer’s disease. Curr. Top. Med. Chem. 6, 597–608 (2006). (PMID: 10.2174/156802606776743066)
Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. & Lansbury, P. T. Jr Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418, 291 (2002). (PMID: 10.1038/418291a)
Knowles, T. P. J. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009). (PMID: 10.1126/science.1178250)
Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013). (PMID: 10.1073/pnas.1218402110)
Törnquist, M. et al. Secondary nucleation in amyloid formation. Chem. Commun. 54, 8667–8684 (2018). (PMID: 10.1039/C8CC02204F)
Michaels, T. C. T. et al. Chemical kinetics for bridging molecular mechanisms and macroscopic measurements of amyloid fibril formation. Annu. Rev. Phys. Chem. 69, 273–298 (2018). (PMID: 10.1146/annurev-physchem-050317-021322)
Walsh, D. M. et al. A facile method for expression and purification of the Alzheimer’s disease-associated amyloid β-peptide. FEBS J. 276, 1266–1281 (2009). (PMID: 10.1111/j.1742-4658.2008.06862.x)
Szczepankiewicz, O. et al. N-terminal extensions retard Aβ42 fibril formation but allow cross-seeding and coaggregation with Aβ42. J. Am. Chem. Soc. 137, 14673–14685 (2015). (PMID: 10.1021/jacs.5b07849)
Nasir, I., Linse, S. & Cabaleiro-Lago, C. Fluorescent filter-trap assay for amyloid fibril formation kinetics in complex solutions. ACS Chem. Neurosci. 6, 1436–1444 (2015). (PMID: 10.1021/acschemneuro.5b00104)
Colvin, M. T. et al. Atomic resolution structure of monomorphic Aβ-42 amyloid fibrils. J. Am. Chem. Soc. 138, 9663–9674 (2016). (PMID: 10.1021/jacs.6b05129)
Wälti, M. A. et al. Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril. Proc. Natl Acad. Sci. USA 113, E4976–E4984 (2016). (PMID: 10.1073/pnas.1600749113)
Anwar, J., Khan, S. & Lindfors, L. Secondary crystal nucleation: nuclei breeding factory uncovered. Angew. Chem. Int. Ed. 54, 14681–14684 (2015). (PMID: 10.1002/anie.201501216)
Orgel, L. E. Prion replication and secondary nucleation. Chem. Biol. 3, 413–414 (1996). (PMID: 10.1016/S1074-5521(96)90087-3)
Vekilov, P. G. The two-step mechanism of nucleation of crystals in solution. Nanoscale 2, 2346–2357 (2010). (PMID: 10.1039/c0nr00628a)
Sear, R. P. The non-classical nucleation of crystals: microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate. Int. Mater. Rev. 57, 328–356 (2012). (PMID: 10.1179/1743280411Y.0000000015)
Koffie, R. et al. Oligomeric amyloid associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl Acad. Sci. USA 106, 4012–4017 (2009). (PMID: 10.1073/pnas.0811698106)
Cohen, S. I. A. et al. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat. Struct. Mol. Biol. 22, 207–213 (2015). (PMID: 10.1038/nsmb.2971)
Cukalevki, R. et al. The Aβ40 and Aβ42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation. Chem. Sci. 6, 4215–4233 (2015). (PMID: 10.1039/C4SC02517B)
Šarić, A. et al. Physical determinants of the self-replication of protein fibrils. Nat. Phys. 12, 874–880 (2016). (PMID: 10.1038/nphys3828)
Fändrich, M., Fletcher, M. A. & Dobson, C. M. Amyloid fibrils from muscle myoglobin. Nature 410, 165–166 (2001). (PMID: 10.1038/35065514)
Allison, J. R., Varnai, P., C. M. Dobson, C. M. & Vendruscolo, M. Determination of the free energy landscape of alpha-synuclein using spin label nuclear magnetic resonance measurements. J. Am. Chem. Soc. 131, 18314–18326 (2009). (PMID: 10.1021/ja904716h)
Šarić, A., Chebaro, Y. C., Knowles, T. P. J. & Frenkel, D. Crucial role of nonspecific interactions in amyloid nucleation. Proc. Natl Acad. Sci. USA 111, 17869–17874 (2014). (PMID: 10.1073/pnas.1410159111)
Šarić, A., Michaels, T. C. T., Zaccone, A., Knowles, T. P. J. & Frenkel, D. Kinetics of spontaneous filament nucleation via oligomers: insights from theory and simulation. J. Chem. Phys. 145, 211926 (2016). (PMID: 10.1063/1.4965040)
Michaels, T. C. T. et al. Reaction rate theory for supramolecular kinetics: application to protein aggregation. Mol. Phys. 116, 3055–3065 (2018). (PMID: 10.1080/00268976.2018.1474280)
Galkin, O. et al. Two-step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers. Biophys. J. 93, 902–913 (2007). (PMID: 10.1529/biophysj.106.103705)
Auer, S., Dobson, C. M. & Vendruscolo, M. Characterization of the nucleation barriers for protein aggregation and amyloid formation. HFSP J. 1, 137–146 (2007). (PMID: 10.2976/1.2760023)
Lee, C.-T. & Terentjev, E. M. Mechanisms and rates of nucleation of amyloid fibrils. J. Chem. Phys. 147, 105103 (2017). (PMID: 10.1063/1.4995255)
Chen, S. W. et al. Structural characterization of toxic oligomers that are kinetically trapped during alpha-synuclein fibril formation. Proc. Natl Acad. Sci. USA 112, E1994–E2003 (2015). (PMID: 10.1073/pnas.1421204112)
Garai, K., Posey, A. E., Li, X., Buxbaum, J. N. & Pappu, R. V. Inhibition of amyloid beta fibril formation by monomeric human transthyretin. Protein Sci. 27, 1252–1261 (2018). (PMID: 10.1002/pro.3396)
معلومات مُعتمدة: United Kingdom BB_ Biotechnology and Biological Sciences Research Council
المشرفين على المادة: 0 (Amyloid beta-Peptides)
0 (Peptide Fragments)
0 (amyloid beta-protein (1-42))
تواريخ الأحداث: Date Created: 20200415 Date Completed: 20201217 Latest Revision: 20210302
رمز التحديث: 20221213
DOI: 10.1038/s41557-020-0452-1
PMID: 32284577
قاعدة البيانات: MEDLINE
الوصف
تدمد:1755-4349
DOI:10.1038/s41557-020-0452-1