دورية أكاديمية

Chemical signatures of soft tissues distinguish between vertebrates and invertebrates from the Carboniferous Mazon Creek Lagerstätte of Illinois.

التفاصيل البيبلوغرافية
العنوان: Chemical signatures of soft tissues distinguish between vertebrates and invertebrates from the Carboniferous Mazon Creek Lagerstätte of Illinois.
المؤلفون: McCoy VE; Department of Geosciences, University of Wisconsin, Milwaukee, Milwaukee, WI, USA.; Institute of Geosciences, University of Bonn, Bonn, Germany., Wiemann J; Department of Geology and Geophysics, Yale University, New Haven, CT, USA., Lamsdell JC; Department of Geology and Geography, West Virginia University, Morgantown, WV, USA., Whalen CD; Department of Geology and Geophysics, Yale University, New Haven, CT, USA., Lidgard S; Field Museum of Natural History, Chicago, IL, USA., Mayer P; Field Museum of Natural History, Chicago, IL, USA., Petermann H; Department of Earth Sciences, Denver Museum of Nature and Science, Colorado Boulevard, Denver, CO, USA., Briggs DEG; Department of Geology and Geophysics, Yale University, New Haven, CT, USA.; Yale Peabody Museum of Natural History, New Haven, CT, USA.
المصدر: Geobiology [Geobiology] 2020 Sep; Vol. 18 (5), pp. 560-565. Date of Electronic Publication: 2020 Apr 28.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 101185472 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1472-4669 (Electronic) Linking ISSN: 14724669 NLM ISO Abbreviation: Geobiology Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Wiley, 2003-
مواضيع طبية MeSH: Invertebrates* , Vertebrates*, Animals ; Fossils ; Illinois ; Phylogeny
مستخلص: The chemical composition of fossil soft tissues is a potentially powerful and yet underutilized tool for elucidating the affinity of problematic fossil organisms. In some cases, it has proven difficult to assign a problematic fossil even to the invertebrates or vertebrates (more generally chordates) based on often incompletely preserved morphology alone, and chemical composition may help to resolve such questions. Here, we use in situ Raman microspectroscopy to investigate the chemistry of a diverse array of invertebrate and vertebrate fossils from the Pennsylvanian Mazon Creek Lagerstätte of Illinois, and we generate a ChemoSpace through principal component analysis (PCA) of the in situ Raman spectra. Invertebrate soft tissues characterized by chitin (polysaccharide) fossilization products and vertebrate soft tissues characterized by protein fossilization products plot in completely separate, non-overlapping regions of the ChemoSpace, demonstrating the utility of certain soft tissue molecular signatures as biomarkers for the original soft tissue composition of fossil organisms. The controversial problematicum Tullimonstrum, known as the Tully Monster, groups with the vertebrates, providing strong evidence of a vertebrate rather than invertebrate affinity.
(© 2020 John Wiley & Sons Ltd.)
References: Alleon, J., Bernard, S., Le Guillou, C., Daval, D., Skouri-Panet, F., Kuga, M., & Robert, F. (2017). Organic molecular heterogeneities can withstand diagenesis. Scientific Reports, 7, 1508. https://doi.org/10.1038/s41598-017-01612-8.
Beall, B. S. (1991). The Tully Monster and a new approach to analyzing problematica. In A. M. Simonetta, & S. Conway Morris (Eds.), The early evolution of Metazoa and the significance of problematic taxa (pp. 271-285). Cambridge, UK: Cambridge University Press.
Briggs, D. E. G., & Summons, R. E. (2014). Ancient biomolecules: Their origins, fossilization, and role in revealing the history of life. BioEssays, 36, 482-490. https://doi.org/10.1002/bies.201400010.
Clements, T., Dolocan, A., Martin, P., Purnell, M. A., Vinther, J., & Gabbott, S. E. (2016). The eyes of Tullimonstrum reveal a vertebrate affinity. Nature, 532, 500-503. https://doi.org/10.1038/nature17647.
Clements, T., Purnell, M. A., & Gabbott, S. E. (2019). The Mazon Creek Lagerstätte: A diverse late Palaeozoic ecosystem entombed within siderite concretions. Journal of the Geological Society, 176, 1-11.
Denton, J. S. S., & Goolsby, E. W. (2018). Measuring inferential importance of taxa using taxon influence indices. Ecology and Evolution, 8, 4484-4494. https://doi.org/10.1002/ece3.3941.
Foster, M. W. (1979). A reappraisal of Tullimonstrum gregarium. In M. H. Nitecki (Ed.), Mazon Creek fossils (pp. 269-301). Academic Press, New York.
Grice, K., Holman, A. I., Plet, C., & Tripp, M. (2019). Fossilised biomolecules and biomarkers in carbonate concretions from Konservat-Lagerstätten. Minerals, 9, 158. https://doi.org/10.3390/min9030158.
McCoy, V. E., Saupe, E. E., Lamsdell, J. C., Tarhan, L. G., McMahon, S., Lidgard, S., … Briggs, D. E. G. (2016). The “Tully monster” is a vertebrate. Nature, 532, 496-499. https://doi.org/10.1038/nature16992.
Parry, L. A., Smithwick, F., Nordén, K. K., Saitta, E. T., Lozano-Fernandez, J., Tanner, A. R., … Vinther, J. (2018). Soft-bodied fossils are not simply rotten carcasses - Toward a holistic understanding of exceptional fossil preservation. BioEssays, 40, 1700167. https://doi.org/10.1002/bies.201700167.
Purnell, M. A., Donoghue, P. J. C., Gabbott, S. E., McNamara, M. E., Murdock, D. J. E., & Sansom, R. S. (2018). Experimental analysis of soft-tissue fossilization: Opening the black box. Palaeontology, 61, 317-323. https://doi.org/10.1111/pala.12360.
Richardson, E. S. Jr (1966). Wormlike fossil from the Pennsylvanian of Illinois. Science, 151, 75-76. https://doi.org/10.1126/science.151.3706.75-a.
Rogers, C. S., Astrop, T. I., Webb, S. M., Ito, S., Wakamatsu, K., & McNamara, M. E. (2019). Synchrotron X-ray absorption spectroscopy of melanosomes in vertebrates and cephalopods: Implications for the affinity of Tullimonstrum. Proceedings of the Royal Society B, 286, 20191649.
Sallan, L., Giles, S., Sansom, R. S., Clarke, J. T., Johanson, Z., Sansom, I. J., & Janvier, P. (2017). The “Tully Monster” is not a vertebrate: Characters, convergence and taphonomy in Palaeozoic problematic animals. Palaeontology, 60, 149-157. https://doi.org/10.1111/pala.12282.
Vistoli, G., De Maddis, D., Cipak, A., Zarkovic, N., Carini, M., & Aldini, G. (2013). Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radical Research, 47, 3-27. https://doi.org/10.3109/10715762.2013.815348.
Wiemann, J., Crawford, J. M., & Briggs, D. E. G. (in press). Phylogenetic and physiological signals in metazoan fossil biomolecules. Science Advances.
Wiemann, J., Fabbri, M., Yang, T.-R., Stein, K., Sander, P. M., Norell, M. A., & Briggs, D. E. G. (2018). Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nature Communications, 9, 4741. https://doi.org/10.1038/s41467-018-07013-3.
Wiemann, J., Yang, T.-R., & Norell, M. A. (2018). Dinosaur egg colour had a single evolutionary origin. Nature, 563, 555-558. https://doi.org/10.1038/s41586-018-0646-5.
فهرسة مساهمة: Keywords: Tully Monster; chitin; chordate; in situ Raman spectroscopy; keratin; protein fossilization products
تواريخ الأحداث: Date Created: 20200430 Date Completed: 20201015 Latest Revision: 20201015
رمز التحديث: 20231215
DOI: 10.1111/gbi.12397
PMID: 32347003
قاعدة البيانات: MEDLINE
الوصف
تدمد:1472-4669
DOI:10.1111/gbi.12397