دورية أكاديمية

Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.

التفاصيل البيبلوغرافية
العنوان: Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.
المؤلفون: Wienert B; Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA.; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA.; Gladstone Institutes, San Francisco, CA, 94158, USA., Nguyen DN; Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143, USA.; Diabetes Center, University of California, San Francisco, CA, 94143, USA.; Department of Medicine, University of California, San Francisco, CA, 94143, USA., Guenther A; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA., Feng SJ; Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA.; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA., Locke MN; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA., Wyman SK; Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA., Shin J; Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093, Zurich, Switzerland., Kazane KR; Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA.; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA., Gregory GL; Gladstone Institutes, San Francisco, CA, 94158, USA., Carter MAM; Gladstone Institutes, San Francisco, CA, 94158, USA., Wright F; Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143, USA., Conklin BR; Gladstone Institutes, San Francisco, CA, 94158, USA.; Departments of Medicine, Ophthalmology, and Pharmacology, University of California, San Francisco, CA, 94143, USA., Marson A; Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA.; Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143, USA.; Diabetes Center, University of California, San Francisco, CA, 94143, USA.; Department of Medicine, University of California, San Francisco, CA, 94143, USA.; Parker Institute for Cancer Immunotherapy, San Francisco, CA, 94129, USA.; Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA., Richardson CD; Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA. chris.richardson@lifesci.ucsb.edu.; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA. chris.richardson@lifesci.ucsb.edu.; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA. chris.richardson@lifesci.ucsb.edu., Corn JE; Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA. jacob.corn@biol.ethz.ch.; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA. jacob.corn@biol.ethz.ch.; Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093, Zurich, Switzerland. jacob.corn@biol.ethz.ch.
المصدر: Nature communications [Nat Commun] 2020 Apr 30; Vol. 11 (1), pp. 2109. Date of Electronic Publication: 2020 Apr 30.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: CRISPR-Cas Systems* , Recombinational DNA Repair*, Cell Cycle Proteins/*antagonists & inhibitors , Cell Cycle Proteins/*genetics , Protein Serine-Threonine Kinases/*antagonists & inhibitors , Protein Serine-Threonine Kinases/*genetics, DNA Breaks, Double-Stranded ; Gene Editing ; Genetic Engineering/methods ; HCT116 Cells ; HEK293 Cells ; HeLa Cells ; Homologous Recombination ; Humans ; K562 Cells ; Phenotype ; RNA, Guide, CRISPR-Cas Systems/metabolism ; S Phase
مستخلص: Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification.
References: Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014). (PMID: 2543077410.1126/science.125809625430774)
Lingeman, E., Jeans, C. & Corn, J. E. Production of purified casrnps for efficacious genome editing. Curr. Protoc. Mol. Biol. 120, 31.10.1–31.10.19 (2017). (PMID: 10.1002/cpmb.43)
Porteus, M. H. Towards a new era in medicine: therapeutic genome editing. Genome Biol. 16, 286 (2015). (PMID: 26694713469936110.1186/s13059-015-0859-y)
Romero, Z., DeWitt, M. & Walters, M. C. Promise of gene therapy to treat sickle cell disease. Expert Opin. Biol. Ther. 18, 1123–1136 (2018). (PMID: 3032481010.1080/14712598.2018.153611930324810)
Liang, X., Potter, J., Kumar, S., Ravinder, N. & Chesnut, J. D. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J. Biotechnol. 241, 136–146 (2017). (PMID: 2784516410.1016/j.jbiotec.2016.11.01127845164)
Thyme, S. B. & Schier, A. F. Polq-mediated end joining is essential for surviving DNA double-strand breaks during early Zebrafish development. Cell Rep. 15, 707–714 (2016). (PMID: 27149851506365910.1016/j.celrep.2016.03.072)
Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3, e04766 (2014). (PMID: 25497837438309710.7554/eLife.04766)
Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016). (PMID: 2678949710.1038/nbt.348126789497)
Richardson, C. D. et al. CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat. Genet. 50, 1132–1139 (2018). (PMID: 3005459510.1038/s41588-018-0174-030054595)
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013). (PMID: 23849981377014510.1016/j.cell.2013.06.044)
Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife 5, e19760 (2016).
Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019). (PMID: 3047624310.1093/nar/gky113130476243)
Nakanishi, K. et al. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc. Natl Acad. Sci. USA 102, 1110–1115 (2005). (PMID: 1565005010.1073/pnas.040779610215650050)
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009). (PMID: 10.1038/nprot.2008.211)
Duxin, J. P. & Walter, J. C. What is the DNA repair defect underlying Fanconi anemia? Curr. Opin. Cell Biol. 37, 49–60 (2015). (PMID: 26512453468810310.1016/j.ceb.2015.09.002)
Lei, L. et al. APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks. Nat. Struct. Mol. Biol. 25, 45–52 (2018). (PMID: 2932327410.1038/s41594-017-0004-629323274)
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016). (PMID: 27096365487337110.1038/nature17946)
Haber, J. E. Partners and pathways. Trends Genet. 16, 259–264 (2000). (PMID: 1082745310.1016/S0168-9525(00)02022-910827453)
Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64 (2016). (PMID: 2643758610.1016/j.tcb.2015.07.00926437586)
Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542 (2015). (PMID: 25798939461851010.1038/nbt.3190)
Pannunzio, N. R., Watanabe, G. & Lieber, M. R. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J. Biol. Chem. 293, 10512–10523 (2018). (PMID: 2924700910.1074/jbc.TM117.00037429247009)
Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018). (PMID: 29995861623941710.1038/s41586-018-0326-5)
Koltun, E. S. et al. Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorg. Med. Chem. Lett. 22, 3727–3731 (2012). (PMID: 2256056710.1016/j.bmcl.2012.04.02422560567)
Roberts, B. et al. Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization. Mol. Biol. Cell 28, 2854–2874 (2017). (PMID: 28814507563858810.1091/mbc.e17-03-0209)
DeWitt, M. A. et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 8, 360ra134 (2016). (PMID: 27733558550030310.1126/scitranslmed.aaf9336)
Takenaka, T. et al. Autosomal codominant inheritance and Japanese incidence of deficiency of OKT4 epitope with lack of reactivity resulting from conformational change. J. Immunol. 151, 2864–2870 (1993). (PMID: 76896187689618)
Cavazzana, M., Bushman, F. D., Miccio, A., André-Schmutz, I. & Six, E. Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat. Rev. Drug Discov. 18, 447–462 (2019). (PMID: 3085850210.1038/s41573-019-0020-930858502)
Bailey, S. R. & Maus, M. V. Gene editing for immune cell therapies. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0137-8 (2019).
Sasi, N. K. et al. The potent Cdc7-Dbf4 (DDK) kinase inhibitor XL413 has limited activity in many cancer cell lines and discovery of potential new DDK inhibitor scaffolds. PLoS One 9, e113300 (2014). (PMID: 25412417423903810.1371/journal.pone.0113300)
Montagnoli, A. et al. A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat. Chem. Biol. 4, 357–365 (2008). (PMID: 1846980910.1038/nchembio.9018469809)
Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548 (2015). (PMID: 2580330610.1038/nbt.319825803306)
Jayathilaka, K. et al. A chemical compound that stimulates the human homologous recombination protein RAD51. Proc. Natl Acad. Sci. USA 105, 15848–15853 (2008). (PMID: 1884068210.1073/pnas.080804610518840682)
Song, J. et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 7, 10548 (2016). (PMID: 26817820473835710.1038/ncomms10548)
Yu, C. et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16, 142–147 (2015). (PMID: 25658371446186910.1016/j.stem.2015.01.003)
Canny, M. D. et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat. Biotechnol. 36, 95–102 (2018). (PMID: 2917661410.1038/nbt.4021)
Lei, M. et al. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 11, 3365–3374 (1997). (PMID: 940702931682410.1101/gad.11.24.3365)
Tsuji, T., Ficarro, S. B. & Jiang, W. Essential role of phosphorylation of MCM2 by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells. Mol. Biol. Cell 17, 4459–4472 (2006). (PMID: 16899510163535010.1091/mbc.e06-03-0241)
Rainey, M. D., Quachthithu, H., Gaboriau, D. & Santocanale, C. DNA replication dynamics and cellular responses to ATP competitive CDC7 kinase inhibitors. ACS Chem. Biol. 12, 1893–1902 (2017). (PMID: 2856086410.1021/acschembio.7b00117)
Zielke, N. & Edgar, B. A. FUCCI sensors: powerful new tools for analysis of cell proliferation. Wiley Interdiscip. Rev. Dev. Biol. 4, 469–487 (2015). (PMID: 25827130668114110.1002/wdev.189)
Eichenlaub-Ritter, U. & Boll, I. Nocodazole sensitivity, age-related aneuploidy, and alterations in the cell cycle during maturation of mouse oocytes. Cytogenet. Cell Genet. 52, 170–176 (1989). (PMID: 253531210.1159/0001328712535312)
Zimmermann, F. K., Mayer, V. W. & Scheel, I. Induction of aneuploidy by oncodazole (nocodazole), an anti-tubulin agent, and acetone. Mutat. Res. 141, 15–18 (1984). (PMID: 638477010.1016/0165-7992(84)90030-76384770)
Verdoodt, B. et al. Induction of polyploidy and apoptosis after exposure to high concentrations of the spindle poison nocodazole. Mutagenesis 14, 513–520 (1999). (PMID: 1047365610.1093/mutage/14.5.51310473656)
Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19, 1–9 (2016). (PMID: 2800818410.1038/ncb345228008184)
Alver, R. C., Chadha, G. S., Gillespie, P. J. & Blow, J. J. Reversal of DDK-mediated MCM phosphorylation by Rif1-PP1 regulates replication initiation and replisome stability independently of ATR/Chk1. Cell Rep. 18, 2508–2520 (2017). (PMID: 28273463535773310.1016/j.celrep.2017.02.042)
Hughes, S. et al. Crystal structure of human CDC7 kinase in complex with its activator DBF4. Nat. Struct. Mol. Biol. 19, 1101–1107 (2012). (PMID: 2306464710.1038/nsmb.240423064647)
Pessoa-Brandão, L. & Sclafani, R. A. CDC7/DBF4 functions in the translesion synthesis branch of the RAD6 epistasis group in Saccharomyces cerevisiae. Genetics 167, 1597–1610 (2004). (PMID: 15342501147102310.1534/genetics.103.021675)
Day, T. A. et al. Phosphorylated Rad18 directs DNA polymerase η to sites of stalled replication. J. Cell Biol. 191, 953–966 (2010). (PMID: 21098111299517310.1083/jcb.201006043)
Nambiar, T. S. et al. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat. Commun. 10, 3395 (2019). (PMID: 31363085666747710.1038/s41467-019-11105-z)
Brandão, L. N., Ferguson, R., Santoro, I., Jinks-Robertson, S. & Sclafani, R. A. The role of Dbf4-dependent protein kinase in DNA polymerase ζ-dependent mutagenesis in Saccharomyces cerevisiae. Genetics 197, 1111–1122 (2014). (PMID: 24875188412538710.1534/genetics.114.165308)
Ghezraoui, H. et al. 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. Nature 560, 122–127 (2018). (PMID: 30046110698921710.1038/s41586-018-0362-1)
Yamada, M. et al. ATR-Chk1-APC/CCdh1-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress. Genes Dev. 27, 2459–2472 (2013). (PMID: 24240236384173510.1101/gad.224568.113)
Orthwein, A. et al. Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344, 189–193 (2014). (PMID: 2465293910.1126/science.124802424652939)
Ferreira, A., Sinjoanu, R. C., Nicholson, A. & Kleinschmidt, S. Aβ toxicity in primary cultured neurons. Methods Mol. Biol. 670, 141–153 (2011). (PMID: 2096758910.1007/978-1-60761-744-0_1120967589)
Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011). (PMID: 2146082310.1038/nmeth.159121460823)
Anders, C. & Jinek, M. In vitro enzymology of Cas9. Methods Enzymol. 546, 1–20 (2014). (PMID: 25398333507435810.1016/B978-0-12-801185-0.00001-5)
Li, W. et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 43, W580–W584 (2015). (PMID: 25845596448927210.1093/nar/gkv279)
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408 (2001). (PMID: 10.1006/meth.2001.1262)
معلومات مُعتمدة: DP2 HL141006 United States HL NHLBI NIH HHS; L40 AI140341 United States AI NIAID NIH HHS; P30 AI027763 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Cell Cycle Proteins)
0 (RNA, Guide, CRISPR-Cas Systems)
EC 2.7.1.- (CDC7 protein, human)
EC 2.7.11.1 (Protein Serine-Threonine Kinases)
تواريخ الأحداث: Date Created: 20200502 Date Completed: 20200807 Latest Revision: 20240425
رمز التحديث: 20240425
مُعرف محوري في PubMed: PMC7193628
DOI: 10.1038/s41467-020-15845-1
PMID: 32355159
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-020-15845-1