دورية أكاديمية

Lipocalin-2 is increased in amyotrophic lateral sclerosis.

التفاصيل البيبلوغرافية
العنوان: Lipocalin-2 is increased in amyotrophic lateral sclerosis.
المؤلفون: Petrozziello T; Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts., Mills AN; Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts., Farhan SMK; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts., Mueller KA; Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts., Granucci EJ; Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts., Glajch KE; Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts., Chan J; Biostatistics Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts., Chew S; Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts., Berry JD; Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts., Sadri-Vakili G; Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts.
المصدر: Muscle & nerve [Muscle Nerve] 2020 Aug; Vol. 62 (2), pp. 272-283. Date of Electronic Publication: 2020 May 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 7803146 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4598 (Electronic) Linking ISSN: 0148639X NLM ISO Abbreviation: Muscle Nerve Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005-> : Hoboken, NJ : John Wiley & Sons
Original Publication: New York, NY : John Wiley & Sons
مواضيع طبية MeSH: Amyotrophic Lateral Sclerosis/*genetics , Inflammation/*metabolism , Lipocalin-2/*genetics , Motor Cortex/*metabolism , Spinal Cord/*metabolism, Adult ; Aged ; Aged, 80 and over ; Amyotrophic Lateral Sclerosis/metabolism ; Amyotrophic Lateral Sclerosis/physiopathology ; Blotting, Western ; Case-Control Studies ; Cell Death ; Cell Line, Tumor ; Cytokines/drug effects ; Cytokines/metabolism ; Enzyme-Linked Immunosorbent Assay ; Female ; Fluorescent Antibody Technique ; Humans ; In Vitro Techniques ; Lipocalin-2/antagonists & inhibitors ; Lipocalin-2/metabolism ; Lipocalin-2/pharmacology ; Male ; Middle Aged ; Polymorphism, Single Nucleotide ; Real-Time Polymerase Chain Reaction
مستخلص: Background: The exact mechanisms underlying neuroinflammation and how they contribute to amyotrophic lateral sclerosis (ALS) pathogenesis remain unclear. One possibility is the secretion of neurotoxic factors, such as lipocalin-2 (LCN2), that lead to neuronal death.
Methods: LCN2 levels were measured in human postmortem tissue using Western blot, quantitative real time polymerase chain reaction, and immunofluorescence, and in plasma by enzyme-linked immunosorbent assay. SH-SY5Y cells were used to test the pro-inflammatory effects of LCN2.
Results: LCN2 is increased in ALS postmortem motor cortex, spinal cord, and plasma. Furthermore, we identified several LCN2 variants in ALS patients that may contribute to disease pathogenesis. Lastly, while LCN2 treatment caused cell death and increased pro-inflammatory markers, treatment with an anti-LCN2 antibody prevented these responses in vitro.
Conclusions: LCN2 upregulation in ALS postmortem samples and plasma may be an upstream event for triggering neuroinflammation and neuronal death.
(© 2020 Wiley Periodicals, Inc.)
References: Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344(22):1688-1700.
Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942-955.
Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17(1):17-23.
Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197-206.
Zhao W, Beers DR, Appel SH. Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J Neuroimmune Pharmacol. 2013;8(4):888-899.
Hooten KG, Beers DR, Zhao W, Appel SH. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics. 2015;12(2):364-375.
Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol. 2017;8:1005.
Haidet-Phillips AM, Hester ME, Miranda CJ, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol. 2011;29(9):824-828.
Butovsky O, Siddiqui S, Gabriely G, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest. 2012;122(9):3063-3087.
Ferraiuolo L, Higginbottom A, Heath PR, et al. Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain. 2011;134(Pt 9):2627-2641.
Liao B, Zhao W, Beers DR, Henkel JS, Appel SH. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol. 2012;237(1):147-152.
Glajch KE, Ferraiuolo L, Mueller KA, et al. Microneurotrophins improve survival in motor neuron-astrocyte co-cultures but do not improve disease phenotypes in a mutant SOD1 mouse model of amyotrophic lateral sclerosis. PLoS One. 2016;11(10):e0164103.
Kjeldsen L, Bainton DF, Sengelov H, Borregaard N. Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood. 1994;83(3):799-807.
Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268(14):10425-10432.
Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432(7019):917-921.
Jha MK, Lee S, Park DH, et al. Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev. 2015;49:135-156.
Ip JP, Nocon AL, Hofer MJ, Lim SL, Muller M, Campbell IL. Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration. J Neuroinflammation. 2011;8:124.
Kim BW, Jeong KH, Kim JH, et al. Pathogenic upregulation of glial lipocalin-2 in the Parkinsonian dopaminergic system. J Neurosci. 2016;36(20):5608-5622.
Naude PJ, Nyakas C, Eiden LE, et al. Lipocalin 2: novel component of proinflammatory signaling in Alzheimer's disease. FASEB J. 2012;26(7):2811-2823.
Rathore KI, Berard JL, Redensek A, et al. Lipocalin 2 plays an immunomodulatory role and has detrimental effects after spinal cord injury. J Neurosci. 2011;31(38):13412-13419.
Lee S, Lee WH, Lee MS, Mori K, Suk K. Regulation by lipocalin-2 of neuronal cell death, migration, and morphology. J Neurosci Res. 2012;90(3):540-550.
Bi F, Huang C, Tong J, et al. Reactive astrocytes secrete lcn2 to promote neuron death. Proc Natl Acad Sci U S A. 2013;110(10):4069-4074.
Tong J, Huang C, Bi F, et al. Expression of ALS-linked TDP-43 mutant in astrocytes causes non-cell-autonomous motor neuron death in rats. EMBO J. 2013;32(13):1917-1926.
Schmidt-Ott KM, Mori K, Li JY, et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18(2):407-413.
Ngo ST, Steyn FJ, Huang L, et al. Altered expression of metabolic proteins and adipokines in patients with amyotrophic lateral sclerosis. J Neurol Sci. 2015;357(1-2):22-27.
Ito M, Doi K, Takahashi M, et al. Plasma neutrophil gelatinase-associated lipocalin predicts major adverse cardiovascular events after cardiac care unit discharge. J Cardiol. 2016;67(2):184-191.
Khalil M, Renner A, Langkammer C, et al. Cerebrospinal fluid lipocalin 2 in patients with clinically isolated syndromes and early multiple sclerosis. Mult Scler. 2016;22(12):1560-1568.
Naude PJ, Eisel UL, Comijs HC, et al. Neutrophil gelatinase-associated lipocalin: a novel inflammatory marker associated with late-life depression. J Psychosom Res. 2013;75(5):444-450.
Sadri-Vakili G, Bouzou B, Benn CL, et al. Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models. Hum Mol Genet. 2007;16(11):1293-1306.
Sadri-Vakili G, Kumaresan V, Schmidt HD, et al. Cocaine-induced chromatin remodeling increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of cocaine. J Neurosci. 2010;30(35):11735-11744.
Mueller KA, Glajch KE, Huizenga MN, et al. Hippo signaling pathway dysregulation in human Huntington's disease brain and neuronal stem cells. Sci Rep. 2018;8(1):11355.
Shellikeri S, Karthikeyan V, Martino R, et al. The neuropathological signature of bulbar-onset ALS: a systematic review. Neurosci Biobehav Rev. 2017;75:378-392.
Goldstein LH, Atkins L, Leigh PN. Correlates of quality of life in people with motor neuron disease (MND). Amyotroph Lateral Scler Other Motor Neuron Disord. 2002;3(3):123-129.
Mitsumoto H, Del Bene M. Improving the quality of life for people with ALS: the challenge ahead. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1(5):329-336.
Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol. 2019;18(2):211-220.
Thonhoff JR, Simpson EP, Appel SH. Neuroinflammatory mechanisms in amyotrophic lateral sclerosis pathogenesis. Curr Opin Neurol. 2018;31(5):635-639.
Meyer K, Ferraiuolo L, Miranda CJ, et al. Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc Natl Acad Sci U S A. 2014;111(2):829-832.
Lall D, Baloh RH. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J Clin Invest. 2017;127(9):3250-3258.
McCauley ME, Baloh RH. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol. 2019;137(5):715-730.
Benatar M, Boylan K, Jeromin A, et al. ALS biomarkers for therapy development: state of the field and future directions. Muscle Nerve. 2016;53(2):169-182.
Jin M, Jang E, Suk K. Lipocalin-2 Acts as a neuroinflammatogen in lipopolysaccharide-injected mice. Exp Neurobiol. 2014;23(2):155-162.
Lee S, Jha MK, Suk K. Lipocalin-2 in the inflammatory activation of brain astrocytes. Crit Rev Immunol. 2015;35(1):77-84.
Hu C, Yang K, Li M, Huang W, Zhang F, Wang H. Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther. 2018;11:8099-8106.
Lin HH, Liao CJ, Lee YC, Hu KH, Meng HW, Chu ST. Lipocalin-2-induced cytokine production enhances endometrial carcinoma cell survival and migration. Int J Biol Sci. 2011;7(1):74-86.
Chiang KC, Yeh TS, Wu RC, et al. Lipocalin 2 (LCN2) is a promising target for cholangiocarcinoma treatment and bile LCN2 level is a potential cholangiocarcinoma diagnostic marker. Sci Rep. 2016;6:36138.
Suk K. Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Prog Neurobiol. 2016;144:158-172.
Harlen KM, Roush EC, Clayton JE, Martinka S, Hughes TE. Live-cell assays for cell stress responses reveal new patterns of cell signaling caused by mutations in rhodopsin, alpha-synuclein and TDP-43. Front Cell Neurosci. 2019;13:535.
Xu W, Bao P, Jiang X, et al. Reactivation of nonsense-mediated mRNA decay protects against C9orf72 dipeptide-repeat neurotoxicity. Brain. 2019;142(5):1349-1364.
Guerrero EN, Mitra J, Wang H, et al. Amyotrophic lateral sclerosis-associated TDP-43 mutation Q331K prevents nuclear translocation of XRCC4-DNA ligase 4 complex and is linked to genome damage-mediated neuronal apoptosis. Hum Mol Genet. 2019;28(5):2459-2476.
Lee A, Rayner SL, Gwee SSL, et al. Pathogenic mutation in the ALS/FTD gene, CCNF, causes elevated Lys48-linked ubiquitylation and defective autophagy. Cell Mol Life Sci. 2018;75(2):335-354.
Lorenzl S, Calingasan N, Yang L, et al. Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuromolecular Med. 2004;5(2):119-132.
Annese V, Herrero MT, Di Pentima M, et al. Metalloproteinase-9 contributes to inflammatory glia activation and nigro-striatal pathway degeneration in both mouse and monkey models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Brain Struct Funct. 2015;220(2):703-727.
Yan L, Borregaard N, Kjeldsen L, Moses MA. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem. 2001;276(40):37258-37265.
Kaplan A, Spiller KJ, Towne C, et al. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron. 2014;81(2):333-348.
Niebroj-Dobosz I, Janik P, Sokolowska B, Kwiecinski H. Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur J Neurol. 2010;17(2):226-231.
Fang L, Huber-Abel F, Teuchert M, et al. Linking neuron and skin: matrix metalloproteinases in amyotrophic lateral sclerosis (ALS). J Neurol Sci. 2009;285(1-2):62-66.
Beuche W, Yushchenko M, Mader M, Maliszewska M, Felgenhauer K, Weber F. Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport. 2000;11(16):3419-3422.
Paton CM, Rogowski MP, Kozimor AL, Stevenson JL, Chang H, Cooper JA. Lipocalin-2 increases fat oxidation in vitro and is correlated with energy expenditure in normal weight but not obese women. Obesity (Silver Spring). 2013;21(12):E640-E648.
Paganoni S, Deng J, Jaffa M, Cudkowicz ME, Wills AM. Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve. 2011;44(1):20-24.
Reyes ET, Perurena OH, Festoff BW, Jorgensen R, Moore WV. Insulin resistance in amyotrophic lateral sclerosis. J Neurol Sci. 1984;63(3):317-324.
Pradat PF, Bruneteau G, Gordon PH, et al. Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010;11(1-2):166-171.
Desport JC, Torny F, Lacoste M, Preux PM, Couratier P. Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neurodegener Dis. 2005;2(3-4):202-207.
Funalot B, Desport JC, Sturtz F, Camu W, Couratier P. High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10(2):113-117.
Farhan SMK, Howrigan DP, Abbott LE, et al. Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Nat Neurosci. 2019;22(12):1966-1974.
van der Spek RAA, van Rheenen W, Pulit SL, et al. The project MinE databrowser: bringing large-scale whole-genome sequencing in ALS to researchers and the public. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20(5-6):432-440.
Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-291.
Guerriero R, Sassi C, Gibbs JR, et al. A comprehensive assessment of benign genetic variability for neurodegenerative disorders. bioRxiv 2018; https://www.biorxiv.org/content/10.1101/270686v1. Accessed May 9, 2020.
Schmidt HD, Sangrey GR, Darnell SB, et al. Increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area during cocaine abstinence is associated with increased histone acetylation at BDNF exon I-containing promoters. J Neurochem. 2012;120(2):202-209.
فهرسة مساهمة: Keywords: amyotrophic lateral sclerosis; biomarker; cell death; lipocalin-2; neuroinflammation
المشرفين على المادة: 0 (Cytokines)
0 (LCN2 protein, human)
0 (Lipocalin-2)
تواريخ الأحداث: Date Created: 20200506 Date Completed: 20200925 Latest Revision: 20200925
رمز التحديث: 20221213
DOI: 10.1002/mus.26911
PMID: 32369618
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4598
DOI:10.1002/mus.26911