دورية أكاديمية

Chemistry and anti-herpes simplex virus type 1 evaluation of 4-substituted-1H-1,2,3-triazole-nitroxyl-linked hybrids.

التفاصيل البيبلوغرافية
العنوان: Chemistry and anti-herpes simplex virus type 1 evaluation of 4-substituted-1H-1,2,3-triazole-nitroxyl-linked hybrids.
المؤلفون: Cunha AC; Departamento de Química Orgânica, Instituto de Química, Outeiro de São João Batista, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil., Ferreira VF; Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Dr. Mário Vianna 523, Niterói, RJ, 24241-002, Brazil., Vaz MGF; Departamento de Química Inorgânica, Instituto de Química, Outeiro de São João Batista, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil., Cassaro RAA; Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil., Resende JALC; Laboratório de difração de Raios X, Programa de Pós-Graduação Em Química, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil.; Instituto de Ciências Exatas E da Terra, Universidade Federal do Mato Grosso, Barra do Garças, MT, 78698-000, Brazil., Sacramento CQ; Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil., Costa J; Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil., Abrantes JL; Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil., Souza TML; Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.; National Institute for Science and Technology On Innovation On Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil., Jordão AK; Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59012-570, Brazil. akjordao@ccs.ufrn.br.
المصدر: Molecular diversity [Mol Divers] 2021 Nov; Vol. 25 (4), pp. 2035-2043. Date of Electronic Publication: 2020 May 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: ESCOM Science Publishers Country of Publication: Netherlands NLM ID: 9516534 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-501X (Electronic) Linking ISSN: 13811991 NLM ISO Abbreviation: Mol Divers
أسماء مطبوعة: Original Publication: Leiden, The Netherlands : ESCOM Science Publishers, c1995-
مواضيع طبية MeSH: Antiviral Agents*/pharmacology , Antiviral Agents*/chemistry , Herpesvirus 1, Human*/drug effects , Triazoles*/chemistry , Triazoles*/pharmacology , Nitrogen Oxides*/chemistry , Nitrogen Oxides*/pharmacology, Chlorocebus aethiops ; Vero Cells ; Animals ; Structure-Activity Relationship ; Acyclovir/pharmacology ; Acyclovir/chemistry ; Virus Replication/drug effects ; Cyclic N-Oxides/chemistry ; Cyclic N-Oxides/pharmacology
مستخلص: HSV disease is distributed worldwide. Anti-herpesvirus drugs are a problem in clinical settings, particularly in immunocompromised individuals undergoing herpes simplex virus type 1 infection. In this work, 4-substituted-1,2,3-1H-1,2,3-triazole linked nitroxyl radical derived from TEMPOL were synthesized, and their ability to inhibit the in vitro replication of HSV-1 was evaluated. The nitroxide derivatives were characterized by infrared spectroscopy and elemental analysis, and three of them had their crystal structures determined by single-crystal X-ray diffraction. Four hybrid molecules showed important anti-HSV-1 activity with IC 50 values ranged from 0.80 to 1.32 µM. In particular, one of the nitroxide derivatives was more active than Acyclovir (IC 50  = 0.99 µM). All compounds tested were more selective inhibitors than the reference antiviral drug. Among them, two compounds were 4.5 (IC 50 0.80 µM; selectivity index CC 50 /IC 50 3886) and 7.7 times (IC 50 1.10 µM; selectivity index CC 50 /IC 50 6698) more selective than acyclovir (IC 50 0.99 µM; selectivity index CC 50 /IC 50 : 869). These nitroxide derivatives may be elected as leading compounds due to their antiherpetic activities and good selectivity.
(© 2020. Springer Nature Switzerland AG.)
References: Nicoll MP, Proença JT, Efstathiou S (2012) The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 36:684–705. https://doi.org/10.1111/j.1574-6976.2011.00320.x. (PMID: 10.1111/j.1574-6976.2011.00320.x22150699)
Rajasagi NK, Rouse BT (2019) The role of T cells in herpes stromal keratitis. Front Immunol 10:1–7. https://doi.org/10.3389/fimmu.2019.00512. (PMID: 10.3389/fimmu.2019.00512)
Zhurilo NI, Chudinov MV, Matveev AV, Smirnova OS, Konstantinova ID, Miroshnikov AI, Prutkov AN, Grebenkina LE, Pulkova NV, Shvets VI (2018) Isosteric ribavirin analogues: synthesis and antiviral activities. Bioorg Med Chem Lett 28:11–14. https://doi.org/10.1016/j.bmcl.2017.11.029. (PMID: 10.1016/j.bmcl.2017.11.02929173944)
Dheer D, Singh V, Shankar R (2017) Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg Chem 71:30–54. https://doi.org/10.1016/j.bioorg.2017.01.010. (PMID: 10.1016/j.bioorg.2017.01.01028126288)
Poole CL, James SH (2018) Antiviral therapies for herpesviruses: current agents and new directions. Clin Ther 40:1282–1298. https://doi.org/10.1016/j.clinthera.2018.07.006. (PMID: 10.1016/j.clinthera.2018.07.006301040167728158)
Czartoski T, Liu C, Koelle DM, Schmechel S, Kalus A, Wald A (2006) Fulminant, acyclovir-resistant, herpes simplex virus type 2 hepatitis in an immunocompetent woman. J Clin Microbiol 44:1584–1586. https://doi.org/10.1128/JCM.44.4.1584-1586.2006. (PMID: 10.1128/JCM.44.4.1584-1586.2006165979011448683)
Chen Y, Scieux C, Garrait V, Socié G, Rocha V, Molina JM, Thouvenot D, Morfin F, Hocqueloux L, Garderet L, Espérou H, Sélimi F, Devergie A, Leleu G, Aymard M, Morinet F, Gluckman E, Ribaud P (2000) Resistant herpes simplex virus type 1 infection: an emerging concern after allogeneic stem cell transplantation. Clin Infect Dis 31:927–935. https://doi.org/10.1086/314052. (PMID: 10.1086/31405211049772)
Reusser P (2002) Management of viral infections in immunocompromised cancer patients. Swiss Med Wkly 132:374–378. https://doi.org/10.4414/smw.2002.09875. (PMID: 10.4414/smw.2002.0987512428191)
Wathen MW (2002) Non-nucleoside inhibitors of herpesviruses. Rev Med Virol 12:167–178. https://doi.org/10.1002/rmv.354. (PMID: 10.1002/rmv.35411987142)
De Clerq E (2003) New inhibitors of human cytomegalovirus (HCMV) on the horizon. J Antimicrob Chemother 51:1079–1083. https://doi.org/10.1093/jac/dkg205. (PMID: 10.1093/jac/dkg205)
Hammond JL, Koontz DL, Bazmi HZ, Beadle JR, Hostetler SE, Kini GD, Aldern KA, Richman DD, Hostetler KY, Mellors JW (2001) Alkylglycerol prodrugs of phosphonoformate are potent in vitro inhibitors of nucleoside-resistant human immunodeficiency virus type 1 and select for resistance mutations that suppress zidovudine resistance. Antimicrob Agents Chemother 45:1621–1628. https://doi.org/10.1128/AAC.45.6.1621-1628.2001. (PMID: 10.1128/AAC.45.6.1621-1628.20011135360390523)
Mohamed SF, Flefel EM, Amr AEGE, Abd El-Shafy DN (2010) Anti-HSV-1 activity and mechanism of action of some new synthesized substituted pyrimidine, thiopyrimidine and thiazolopyrimidine derivatives. Eur J Med Chem 45:1494–1501. https://doi.org/10.1016/j.ejmech.2009.12.057. (PMID: 10.1016/j.ejmech.2009.12.05720110135)
Wen Y, Zhang Z, Liu N-N, Andrei G, Snoeck R, Xiang Y-H, Schols D, Chen X, Zhang Z-Y, Zhang Q-S, Wu Q-P (2017) Synthesis and antiviral activity of 5-(benzylthio)-4-carbamyl-1,2,3-triazoles against human cytomegalovirus (CMV) and varicella-zoster virus (VZV). Med Chem 13:453–464. https://doi.org/10.2174/1573406413666170307165236. (PMID: 10.2174/157340641366617030716523628290250)
Mohamed SF, Abbas EMH, Khalaf HS, Farghaly TA, Abd El-Shafy D (2017) Triazolopyrimidines and thiazolopyrimidines: synthesis, anti-HSV-1, cytotoxicity and mechanism of action. Mini-Rev Med Chem 18:794–802. https://doi.org/10.2174/1389557518666171207161542. (PMID: 10.2174/1389557518666171207161542)
Jordão AK, Ferreira VF, Souza TML, Faria GGS, Machado V, Abrantes JL, de Souza MCBV, Cunha AC (2011) Synthesis and anti-HSV-1 activity of new 1,2,3-triazole derivatives. Bioorg Med Chem 19:1860–1865. https://doi.org/10.1016/j.bmc.2011.02.007. (PMID: 10.1016/j.bmc.2011.02.00721376603)
Khan FY, Elhiday A, Khudair IF, Youssef H, Omran AH, Alsamman SH, Elhamid M (2012) Evaluation of the use of piperacillin/tazobactam (Tazocin®) at Hamad General Hospital, Qatar: are there unjustified prescriptions? Infect Drug Resist 5:17–21. https://doi.org/10.2147/idr.s27965. (PMID: 10.2147/idr.s27965222948593269129)
Long TE, Williams JT (2014) Cephalosporins currently in early clinical trials for the treatment of bacterial infections. Expert Opin Investig Drugs 23:1375–1387. https://doi.org/10.1517/13543784.2014.930127. (PMID: 10.1517/13543784.2014.93012724956017)
Wheless JW, Vazquez B (2010) Rufinamide: a novel broad-spectrum antiepileptic drug. Epilepsy Curr 10:1–6. https://doi.org/10.1111/j.1535-7511.2009.01336.x. (PMID: 10.1111/j.1535-7511.2009.01336.x201263292812713)
Wang Y, Cong C, Chai WC, Dong R, Jia L, Song D, Zhou Z, Ma S (2017) Synthesis and antibacterial activity of novel 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs. Bioorg Med Chem Lett 27:3872–3877. https://doi.org/10.1016/j.bmcl.2017.06.044. (PMID: 10.1016/j.bmcl.2017.06.04428655423)
Gonzaga DTG, Souza TML, Andrade VMM, Ferreira VF, da Silva FC (2018) Identification of 1-Aryl-1H-1,2,3-triazoles as Potential New Antiretroviral Agents. Med Chem 14:242–248. https://doi.org/10.2174/1573406413666170906121318. (PMID: 10.2174/157340641366617090612131828875856)
Jordão AK, Ferreira VF, Lima ES, de Souza MCBV, Carlos ECL, Castro HC, Geraldo RB, Rodrigues CR, Almeida MCB, Cunha AC (2009) Synthesis, antiplatelet and in silico evaluations of novel N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazides. Bioorg Med Chem 17:3713–3719. https://doi.org/10.1016/j.bmc.2009.03.053. (PMID: 10.1016/j.bmc.2009.03.05319380229)
An R, Hou Z, Li J-T, Yu H-N, Mou Y-H, Guo C (2018) Design, synthesis and biological evaluation of novel 4-substituted coumarin derivatives as antitumor agents. Molecules 23:2281–2292. https://doi.org/10.3390/molecules23092281. (PMID: 10.3390/molecules230922816225359)
Kaur P, Chawla A (2018) Green synthesis, structural characterization and pharmacological evaluation for analgesic and anti-inflammatory activities of salicylic acid based triazolothiadiazole derivatives. Eur J Biomed Pharm Sci 5:472–479.
Jordão AK, Sathler PC, Ferreira VF, Campos VR, de Souza MCBV, Castro HC, Lannes A, Lourenço A, Rodrigues CR, Bello ML, Lourenço MCS, Carvalho GSL, Almeida MCB, Cunha AC (2011) Synthesis, antitubercular activity, and SAR study of N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazides. Bioorg Med Chem 19:5605–5611. https://doi.org/10.1016/j.bmc.2011.07.035. (PMID: 10.1016/j.bmc.2011.07.03521840219)
Fedoreyev SA, Krylova NV, Mishchenko NP, Vasileva EA, Pislyagin EA, Iunikhina NP, Lavrov VF, Svitich AO, Ebralidze LK, Loenova GN (2018) Antiviral and antioxidant properties of echinochrome A. Mar Drugs 16:509–518. https://doi.org/10.3390/md16120509. (PMID: 10.3390/md161205096315383)
Rehman ZU, Meng C, Sun Y, Safdar A, Pasha RH, Munir M, Ding C (2018) Oxidative stress in poultry: lessons from the viral infections. Oxid Med Cell Longev. https://doi.org/10.1155/2018/5123147. (PMID: 10.1155/2018/5123147306478106311761)
Linares E, Giorgio S, Augusto O (2008) Inhibition of in vivo leishmanicidal mechanisms by tempol: Nitric oxide down-regulation and oxidant scavenging. Free Radic Biol Med 44:1668–1676. https://doi.org/10.1016/j.freeradbiomed.2008.01.027. (PMID: 10.1016/j.freeradbiomed.2008.01.02718313408)
Lewandowski M, Gwozdzinski K (2017) Nitroxides as antioxidants and anticancer drugs. Int J Mol Sci 18:2490–2515. https://doi.org/10.3390/ijms18112490. (PMID: 10.3390/ijms181124905713456)
Thomas K, Moody TW, Jensen RT, Tong J, Rayner CL, Barnett NL, Fairfull-Smith KE, Ridnour LA, Wink DA, Bottle SE (2018) Design, synthesis and biological evaluation of hybrid nitroxide-based non-steroidal anti-inflammatory drugs. Eur J Med Chem 147:34–47. https://doi.org/10.1016/j.ejmech.2018.01.077. (PMID: 10.1016/j.ejmech.2018.01.077294215698202972)
Nunes DVQ, Costa CA, De Bem GF, Cordeiro VSC, Santos IB, Carvalho LCRM, Jordão AK, Cunha AC, Ferreira VF, Moura RS, Resende AC, Ognibene DT (2018) Tempol, a superoxide dismutase-mimetic drug, prevents chronic ischemic renal injury in two-kidney, one-clip hypertensive rats. Clin Exp Hypertens 40:721–729. https://doi.org/10.1080/10641963.2018.1425423. (PMID: 10.1080/10641963.2018.142542329359965)
Queiroz RF, Jordão AK, Cunha AC, Ferreira VF, Brigagão MRPL, Malvezzi A, de Amaral AT, Augusto O (2012) Nitroxides attenuate carrageenan-induced inflammation in rat paws by reducing neutrophil infiltration and the resulting myeloperoxidase-mediated damage. Free Radic Biol Med 53:1942–1953. https://doi.org/10.1016/j.freeradbiomed.2012.09.001. (PMID: 10.1016/j.freeradbiomed.2012.09.00122982597)
Wang H, Gao P, Jing L, Qin X, Sun X (2012) The heart-protective mechanism of nitronyl nitroxide radicals on murine viral myocarditis induced by CVB3. Biochimie 94:1951–1959. https://doi.org/10.1016/j.biochi.2012.05.015. (PMID: 10.1016/j.biochi.2012.05.01522634370)
Soule BP, Hyodo F, Matsumoto K-I, Simone NL, Cook JA, Krishna MC, Mitchell JB (2007) The chemistry and biology of nitroxide compounds. Free Radic Biol Med 42:1632–1650. https://doi.org/10.1016/j.freeradbiomed.2007.02.030. (PMID: 10.1016/j.freeradbiomed.2007.02.030174625321991293)
Wilcox CS (2010) Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther 126:119–145. https://doi.org/10.1016/j.pharmthera.2010.01.003. (PMID: 10.1016/j.pharmthera.2010.01.003201533672854323)
Howieson VM, Tran E, Hoegl A, Fam HL, Fu J, Sivonen K, Li XX, Auclair K, Saliba KJ (2016) Triazole substitution of a labile amide bond stabilizes pantothenamides and improves their antiplasmodial potency. Antimicrob Agents Chemother 60:7146–7152. https://doi.org/10.1128/AAC.01436-16. (PMID: 10.1128/AAC.01436-16276452355118993)
Bahia SBBB, Reis WJ, Jardim GAM, Souto FT, de Simone CA, Gatto CC, Menna-Barreto RFS, de Castro SL, Cavalcanti BC, Pessoa C, Araújo MH, da Silva Júnior EN (2016) Molecular hybridization as a powerful tool towards multitarget quinoidal systems: synthesis, trypanocidal and antitumor activities of naphthoquinone-based 5-iodo-1,4-disubstituted-, 1,4- and 1,5-disubstituted-1,2,3-triazoles. MedChemComm 7:1555–1563. https://doi.org/10.1039/c6md00216a. (PMID: 10.1039/c6md00216a)
Lutz WB, Lazarus S, Meltzer RI (1962) New derivatives of 2,2,6,6-tetramethylpiperidine. J Org Chem 27:1695–1703. https://doi.org/10.1021/jo01052a050. (PMID: 10.1021/jo01052a050)
Rauckman EJ, Rosen GM, Abou-Donia MB (1975) Improved methods for the oxidation of secondary amines to nitroxides. Synth Commun 5:409–413. https://doi.org/10.1080/00397917508065573. (PMID: 10.1080/00397917508065573)
Zhou B-H, Chen Y-F, Yin G-D, Wu A-X (2006) Synthesis and crystal structure of 4-azido-2,2,6,6-tetramethylpiperidine-1-oxyl free radical. Chinese J Struct Chem 25:127–130.
Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst Section C Struct Chem C71:3–8. https://doi.org/10.1107/S2053229614024218. (PMID: 10.1107/S2053229614024218)
Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, Desmyter J, De Clercq E (1988) Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods 20:309–321. https://doi.org/10.1016/0166-0934(88)90134-6. (PMID: 10.1016/0166-0934(88)90134-62460479)
فهرسة مساهمة: Keywords: 1H-1,2,3-triazole derivatives; Anti-HSV-1 activity; Crystal structure; TEMPOL-based radicals
المشرفين على المادة: 0 (Antiviral Agents)
0 (Triazoles)
GFQ4MMS07W (nitroxyl)
0 (Nitrogen Oxides)
X4HES1O11F (Acyclovir)
0 (Cyclic N-Oxides)
تواريخ الأحداث: Date Created: 20200508 Date Completed: 20240724 Latest Revision: 20240724
رمز التحديث: 20240726
DOI: 10.1007/s11030-020-10094-2
PMID: 32377993
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-501X
DOI:10.1007/s11030-020-10094-2