دورية أكاديمية

Unique Multimessenger Signal of QCD Axion Dark Matter.

التفاصيل البيبلوغرافية
العنوان: Unique Multimessenger Signal of QCD Axion Dark Matter.
المؤلفون: Edwards TDP; Gravitation Astroparticle Physics Amsterdam (GRAPPA), Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1090 GL Amsterdam, Netherlands., Chianese M; Gravitation Astroparticle Physics Amsterdam (GRAPPA), Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1090 GL Amsterdam, Netherlands., Kavanagh BJ; Gravitation Astroparticle Physics Amsterdam (GRAPPA), Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1090 GL Amsterdam, Netherlands., Nissanke SM; Gravitation Astroparticle Physics Amsterdam (GRAPPA), Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1090 GL Amsterdam, Netherlands., Weniger C; Gravitation Astroparticle Physics Amsterdam (GRAPPA), Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1090 GL Amsterdam, Netherlands.
المصدر: Physical review letters [Phys Rev Lett] 2020 Apr 24; Vol. 124 (16), pp. 161101.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Physical Society Country of Publication: United States NLM ID: 0401141 Publication Model: Print Cited Medium: Internet ISSN: 1079-7114 (Electronic) Linking ISSN: 00319007 NLM ISO Abbreviation: Phys Rev Lett Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: New York : American Physical Society
مستخلص: We propose a multimessenger probe of QCD axion dark matter based on observations of black hole-neutron star binary inspirals. It is suggested that a dense dark matter spike may grow around intermediate mass black holes (10^{3}-10^{5}  M_{⊙}). The presence of such a spike produces two unique effects: a distinct phase shift in the gravitational wave strain during the inspiral and an enhancement of the radio emission due to the resonant axion-photon conversion occurring in the neutron star magnetosphere throughout the inspiral and merger. Remarkably, the observation of the gravitational wave signal can be used to infer the dark matter density and, consequently, to predict the radio emission. We study the projected reach of the LISA interferometer and next-generation radio telescopes such as the Square Kilometre Array. Given a sufficiently nearby system, such observations will potentially allow for the detection of QCD axion dark matter in the mass range 10^{-7}  eV to 10^{-5}  eV.
تواريخ الأحداث: Date Created: 20200509 Latest Revision: 20200511
رمز التحديث: 20240628
DOI: 10.1103/PhysRevLett.124.161101
PMID: 32383893
قاعدة البيانات: MEDLINE
الوصف
تدمد:1079-7114
DOI:10.1103/PhysRevLett.124.161101