دورية أكاديمية

Arctic and boreal paleofire records reveal drivers of fire activity and departures from Holocene variability.

التفاصيل البيبلوغرافية
العنوان: Arctic and boreal paleofire records reveal drivers of fire activity and departures from Holocene variability.
المؤلفون: Hoecker TJ; Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, 59812, USA., Higuera PE; Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, 59812, USA., Kelly R; UNC Health Care System, 1025 Think Place, Morrisville, North Carolina, 27560, USA., Hu FS; Department of Plant Biology, University of Illinois, Urbana, Illinois, 61801, USA.; Department of Geology, University of Illinois, Urbana, Illinois, 61801, USA.
المصدر: Ecology [Ecology] 2020 Sep; Vol. 101 (9), pp. e03096. Date of Electronic Publication: 2020 Jun 09.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Ecological Society of America Country of Publication: United States NLM ID: 0043541 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1939-9170 (Electronic) Linking ISSN: 00129658 NLM ISO Abbreviation: Ecology Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington, DC : Ecological Society of America
Original Publication: Brooklyn, NY : Brooklyn Botanical Garden
مواضيع طبية MeSH: Ecosystem* , Fires*, Alaska ; Arctic Regions ; Trees ; Yukon Territory
مستخلص: Boreal forest and tundra biomes are key components of the Earth system because the mobilization of large carbon stocks and changes in energy balance could act as positive feedbacks to ongoing climate change. In Alaska, wildfire is a primary driver of ecosystem structure and function, and a key mechanism coupling high-latitude ecosystems to global climate. Paleoecological records reveal sensitivity of fire regimes to climatic and vegetation change over centennial-millennial time scales, highlighting increased burning concurrent with warming or elevated landscape flammability. To quantify spatiotemporal patterns in fire-regime variability, we synthesized 27 published sediment-charcoal records from four Alaskan ecoregions, and compared patterns to paleoclimate and paleovegetation records. Biomass burning and fire frequency increased significantly in boreal forest ecoregions with the expansion of black spruce, ca. 6,000-4,000 years before present (yr BP). Biomass burning also increased during warm periods, particularly in the Yukon Flats ecoregion from ca. 1,000 to 500 yr BP. Increases in biomass burning concurrent with constant fire return intervals suggest increases in average fire severity (i.e., more biomass burning per fire) during warm periods. Results also indicate increases in biomass burning over the last century across much of Alaska that exceed Holocene maxima, providing important context for ongoing change. Our analysis documents the sensitivity of fire activity to broad-scale environmental change, including climate warming and biome-scale shifts in vegetation. The lack of widespread, prolonged fire synchrony suggests regional heterogeneity limited simultaneous fire-regime change across our study areas during the Holocene. This finding implies broad-scale resilience of the boreal forest to extensive fire activity, but does not preclude novel responses to 21st-century changes. If projected increases in fire activity over the 21st century are realized, they would be unprecedented in the context of the last 8,000 yr or more.
(© 2020 by the Ecological Society of America.)
References: Ali, A. A., et al. 2012. Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proceedings of the National Academy of Sciences of the United States of America 109:20966-20970.
AnchukaitisK. J., et al. 2017. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quaternary Science Reviews 163 1 -22. https://doi.org/10.1016/j.quascirev.2017.02.020.
Anderson, P. M. 1988. Late quaternary pollen records from the Kobuk and Noatak river drainages, northwestern Alaska. Quaternary Research 29:263-276.
Anderson, P. M., and L. B. Brubaker. 1993. Holocene vegetation and climate histories of Alaska. H.E. WrightJr., J. E. Kutzbach, T. Webb III, W. F. Ruddiman, A. F. Stree-Perrott and P. J. Bartlein, Pages 385-400 in Global climates since the last glacial maximum, Minneapolis: University of Minnesota Press.
Anderson, P. M., and L. B. Brubaker. 1994. Vegetation history of northcentral Alaska: A mapped summary of late-Quaternary pollen data. Quaternary Science Reviews 13:71-92.
Anderson, P. M., M. E. Edwards, and L. B. Brubaker. 2003. Results and paleoclimate implications of 35 years of paleoecological research in Alaska. Development in Quaternary Science 1:427-440.
Balshi, M. S., A. D. McGuire, P. Duffy, M. Flannigan, J. Walsh, and J. Melillo. 2009. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biology 15:578-600.
Barrett, C. M., R. Kelly, P. E. Higuera, and F. S. Hu. 2013. Climatic and land cover influences on the spatiotemporal dynamics of Holocene boreal fire regimes. Ecology 94:389-402.
Barrett, K., A. D. McGuire, E. E. Hoy, and E. S. Kasischke. 2011. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity. Ecological Applications 21:2380-2396.
Bonan, G. B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444-1449.
Bond-Lamberty, B., S. D. Peckham, D. E. Ahl, and S. T. Gower. 2007. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450:89.
Bowman, D. M. J. S., et al. 2009. Fire in the earth system. Science 324:481-484.
Brown, C. D., and J. F. Johnstone. 2012. Once burned, twice shy: Repeat fires reduce seed availability and alter substrate constraints on Picea mariana regeneration. Forest Ecology and Management 266:34-41.
Brubaker, L. B., P. E. Higuera, T. S. Rupp, M. A. Olson, P. M. Anderson, and F. S. Hu. 2009. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests. Ecology 90:1788-1801.
Bunbury, J., and K. Gajewski. 2009. Postglacial climates inferred from a lake at treeline, southwest Yukon Territory, Canada. Quaternary Science Reviews 28:354-369.
Calder, W. J., D. Parker, C. J. Stopka, G. Jiménez-Moreno, and B. N. Shuman. 2015. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proceedings of the National Academy of Sciences of the United States of America 112:13261-13266.
Chapin, F. S., et al. 2000. Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology 6:211-223.
Chipman, M. L., V. Hudspith, P. E. Higuera, P. A. Duffy, R. Kelly, W. W. Oswald, and F. S. Hu. 2015. Spatiotemporal patterns of tundra fires: Late-Quaternary charcoal records from Alaska. Biogeosciences 12:4017-4027.
Clegg, B. F., R. Kelly, G. H. Clarke, I. R. Walker, and F. S. Hu. 2011. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska. Proceedings of the National Academy of Sciences of the United States of America 108:19299-19304.
Collins, B. M., J. D. Miller, A. E. Thode, M. Kelly, J. W. Van Wagtendonk, and S. L. Stephens. 2009. Interactions among wildland fires in a long-established Sierra Nevada natural fire area. Ecosystems 12:114-128.
Flannigan, M., B. Stocks, M. Turetsky, and M. Wotton. 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology 15:549-560.
Gavin, D. G., and F. S. Hu. 2013. Northwestern North America. S. A. Elias and C. J. Mock, Pages 124-132 in Encyclopedia of Quaternary Science, Amsterdam: Elsevier.
Genet, H., et al. 2013. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska. Environmental Research Letters 8:045016.
Grosse, G., et al. 2011. Vulnerability of high-latitude soil organic carbon in North America to disturbance. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2010JG001507.
Héon, J., D. Arseneault, and M.-A. Parisien. 2014. Resistance of the boreal forest to high burn rates. Proceedings of the National Academy of Sciences of the United States of America 111:13888-13893.
Higuera, P. E., J. L. Barnes, M. L. Chipman, and F. S. Hu. 2011a. The burning tundra: A look back at the last 6,000 years of fire in the Noatak National Preserve, northwestern Alaska. Alaska Park Science 10:36-41.
Higuera, P. E., L. B. Brubaker, P. M. Anderson, F. S. Hu, and T. A. Brown. 2009. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 79:201-219.
Higuera, P. E., M. L. Chipman, J. L. Barnes, M. A. Urban, and F. S. Hu. 2011b. Variability of tundra fire regimes in Arctic Alaska: Millennial-scale patterns and ecological implications. Ecological Applications 21:3211-3226.
Higuera, P. E., M. E. Peters, L. B. Brubaker, and D. G. Gavin. 2007. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quaternary Science Reviews 26:1790-1809.
Hinzman, L., et al. 2005. Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change 72:251-298.
Hoecker, T. J., and P. E. Higuera. 2019. Forest succession and climate variability interacted to control fire activity over the last four centuries in an Alaskan boreal landscape. Landscape Ecology 34:227-241.
Homer, C. G., Fry, J. A., and Barnes, C. A. 2012. The National Land Cover Database . Report 2012-3020http://pubs.er.usgs.gov/publication/fs20123020.
Hoy, E. E., M. R. Turetsky, and E. S. Kasischke. 2016. More frequent burning increases vulnerability of Alaskan boreal black spruce forests. Environmental Research Letters 11:095001.
Hu, F. S., L. B. Brubaker, D. G. Gavin, P. E. Higuera, J. A. Lynch, T. S. Rupp, and W. Tinner. 2006. How climate and vegetation influence the fire regime of the Alaskan boreal biome: The Holocene perspective. Mitigation and Adaptation Strategies for Global Change 11:829-846.
Hu, F. S., P. E. Higuera, P. Duffy, M. L. Chipman, A. V. Rocha, A. M. Young, R. Kelly, and M. C. Dietze. 2015. Arctic tundra fires: Natural variability and responses to climate change. Frontiers in Ecology and the Environment 13:369-377.
Hu, F. S., P. E. Higuera, J. E. Walsh, W. L. Chapman, P. A. Duffy, L. B. Brubaker, and M. L. Chipman. 2010. Tundra burning in Alaska: Linkages to climatic change and sea ice retreat. Journal of Geophysical Research: Biogeosciences 115:1-8.
Irvine, F., L. C. Cwynar, J. C. Vermaire, and A. B. H. Rees. 2012. Midge-inferred temperature reconstructions and vegetation change over the last ~15,000 years from Trout Lake, northern Yukon Territory, eastern Beringia. Journal of Paleolimnology 48:133-146.
Johnson, E. A., and S. L. Gutsell. 1994. Fire frequency models, methods and interpretations. Pages 239-287inM. Begon and A. H. Fitter, editors. Advances in ecological research, San Diego, London: Academic Press.
Johnstone, J. F., F. S. Chapin, T. N. Hollingsworth, M. C. Mack, V. Romanovsky, and M. Turetsky. 2010a. Fire, climate change, and forest resilience in interior Alaska. Canadian Journal of Forest Research 40:1302-1312.
Johnstone, J. F., et al. 2016. Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment 14:369-378.
Johnstone, J. F., T. N. Hollingsworth, F. S. Chapin, and M. C. Mack. 2010b. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Global Change Biology 16:1281-1295.
Kasischke, E. S., and M. R. Turetsky. 2006. Recent changes in the fire regime across the North American boreal region-spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters 33:L09703.
Kasischke, E. S., D. Williams, and D. Barry. 2002. Analysis of the patterns of large fires in the boreal forest region of Alaska. International Journal of Wildland Fire 11:131-144.
Kasischke, E. S., et al. 2010. Alaska’s changing fire regime-implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research 40:1313-1324.
Kaufman, D. S., et al. 2016. Holocene climate changes in eastern Beringia (NW North America): A systematic review of multi-proxy evidence. Quaternary Science Reviews 147:312-339.
Kelly, R., M. L. Chipman, P. E. Higuera, I. Stefanova, L. B. Brubaker, and F. S. Hu. 2013. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proceedings of the National Academy of Sciences of the United States of America 110:13055-13060.
Kelly, R., H. Genet, A. D. McGuire, and F. S. Hu. 2016. Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests. Nature Climate Change 6:4-9.
Kelly, R. F., P. E. Higuera, C. M. Barrett, and F. S. Hu. 2011. A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records. Quaternary Research 75:11-17.
Lynch, J. A., J. S. Clark, N. H. Bigelow, M. E. Edwards, and B. P. Finney. 2002. Geographic and temporal variations in fire history in boreal ecosystems of Alaska. Journal of Geophysical Research 108:1-17.
Lynch, J. A., J. L. Hollis, and F. S. Hu. 2004. Climatic and landscape controls of the boreal forest fire regime: Holocene records from Alaska. Journal of Ecology 92:477-489.
Macias-Fauria, M., S. T. Michaletz, and E. A. Johnson. 2011. Predicting climate change effects on wildfires requires linking processes across scales. Wiley Interdisciplinary Reviews-Climate Change 2:99-112.
Mack, M. C., M. S. Bret-Harte, T. N. Hollingsworth, R. R. Jandt, E. A. G. Schuur, G. R. Shaver, and D. L. Verbyla. 2011. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475:489-492.
Mann, D. H., T. Scott Rupp, M. A. Olson, and P. A. Duffy. 2012. Is Alaska’s boreal forest now crossing a major ecological threshold? Arctic, Antarctic, and Alpine Research 44:319-331.
Marcott, S. A., J. D. Shakun, P. U. Clark, and A. C. Mix. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198-1201.
Marlon, J. R., P. J. Bartlein, A.-L. Daniau, S. P. Harrison, S. Y. Maezumi, M. J. Power, W. Tinner, and B. Vanniére. 2013. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quaternary Science Reviews 65:5-25.
Marlon, J. R., et al. 2015. Reconstructions of biomass burning from sediment charcoal records to improve data-model comparisons. Biogeosciences Discussions 12:18571-18623.
McKay, N. P., D. S. Kaufman, and N. Michelutti. 2008. Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet Lake, south-central Alaska. Geophysical Research Letters 35:4-9.
Miller, G. H., R. B. Alley, J. Brigham-Grette, J. J. Fitzpatrick, L. Polyak, M. C. Serreze, and J. W. C. White. 2010. Arctic amplification: can the past constrain the future? Quaternary Science Reviews 29:1779-1790.
Nowacki, G. J., P. Spencer, M. Fleming, T. Brock, T. Jorgenson, and S. Geological. 2003. Unified ecoregions of Alaska: 2001. Page Open-File Report. No. 2002-2.
O’Donnell, J. A., J. W. Harden, A. D. Mcguire, M. Z. Kanevskiy, M. T. Jorgenson, and X. Xu. 2011. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss. Global Change Biology 17:1461-1474.
Parks, S. A., C. Miller, L. M. Holsinger, L. S. Baggett, and B. J. Bird. 2016. Wildland fire limits subsequent fire occurrence. International Journal of Wildland Fire 25:182-190.
Pastick, N. J., M. Rigge, B. K. Wylie, M. T. Jorgenson, J. R. Rose, K. D. Johnson, and L. Ji. 2014. Distribution and landscape controls of organic layer thickness and carbon within the Alaskan Yukon River Basin. Geoderma 230-231:79-94.
Randerson, J. T., et al. 2006. The impact of boreal forest fire on climate warming. Science 314:1130-1132.
Rocha, A. V., M. M. Loranty, P. E. Higuera, M. C. Mack, F. S. Hu, B. M. Jones, A. L. Breen, E. B. Rastetter, S. J. Goetz, and G. R. Shaver. 2012. The footprint of Alaskan tundra fires during the past half-century: Implications for surface properties and radiative forcing. Environmental Research Letters 7:044039.
Shenoy, A., J. F. Johnstone, E. S. Kasischke, and K. Kielland. 2011. Persistent effects of fire severity on early successional forests in interior Alaska. Forest Ecology and Management 261:381-390.
Szeicz, J. M., G. M. MacDonald, and A. Duk-Rodkin. 1995. Late Quaternary vegetation history of the central Mackenzie Mountains, Northwest Territories, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 113:351-371.
Tinner, W., F. S. Hu, R. Beer, P. Kaltenrieder, B. Scheurer, and U. Krähenbühl. 2006. Postglacial vegetational and fire history: pollen, plant macrofossil and charcoal records from two Alaskan lakes. Vegetation History and Archaeobotany 15:279-293.
Turetsky, M. R., E. S. Kane, J. W. Harden, R. D. Ottmar, K. L. Manies, E. Hoy, and E. S. Kasischke. 2011. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience 4:27-31.
Turner, M. G. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91:2833-2849.
Viau, A. E., and K. Gajewski. 2009. Reconstructing millennial-scale, regional paleoclimates of boreal Canada during the Holocene. Journal of Climate 22:316-330.
Walker, X. J., et al. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572:520-523.
Whitlock, C., P. E. Higuera, D. B. McWethy, and C. E. Briles. 2010. Paleoecological perspectives on fire ecology: Revisiting the fire-regime concept. Open Ecology Journal 3:6-23.
Wiles, G. C., R. D. D’Arrigo, D. Barclay, R. S. Wilson, S. K. Jarvis, L. Vargo, and D. Frank. 2014. Surface air temperature variability reconstructed with tree rings for the Gulf of Alaska over the past 1200 years. Holocene 24:198-208.
Wilson, R., et al. 2016. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews 134:1-18.
Young, A. M., P. E. Higuera, J. T. Abatzoglou, P. A. Duffy, and F. S. Hu. 2019. Consequences of climatic thresholds for projecting fire activity and ecological change. Global Ecology and Biogeography 28:521-532.
Young, A. M., P. E. Higuera, P. A. Duffy, and F. S. Hu. 2017. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography 40:606-617.
معلومات مُعتمدة: EF-1241846 Division of Emerging Frontiers; ARC-1023477 Division of Arctic Sciences; ARC-1023669 Division of Arctic Sciences
فهرسة مساهمة: Keywords: Holocene; boreal forest; climate change; fire; lake-sediment charcoal; paleoecology; paleofire
سلسلة جزيئية: Dryad 10.5061/dryad.0gb5mkkxv
تواريخ الأحداث: Date Created: 20200510 Date Completed: 20210222 Latest Revision: 20210222
رمز التحديث: 20221213
DOI: 10.1002/ecy.3096
PMID: 32386341
قاعدة البيانات: MEDLINE
الوصف
تدمد:1939-9170
DOI:10.1002/ecy.3096