دورية أكاديمية

T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers.

التفاصيل البيبلوغرافية
العنوان: T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers.
المؤلفون: Arunachalam PS; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA., Charles TP; Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA., Joag V; Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA., Bollimpelli VS; Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA., Scott MKD; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.; Center for Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA, USA., Wimmers F; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA., Burton SL; Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA., Labranche CC; Department of Surgery, Duke University School of Medicine, Durham, NC, USA., Petitdemange C; Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA.; HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France., Gangadhara S; Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA., Styles TM; Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA., Quarnstrom CF; Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA., Walter KA; Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA., Ketas TJ; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA., Legere T; Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA., Jagadeesh Reddy PB; Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA.; Pfizer, Andover, MA, USA., Kasturi SP; Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA.; Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA., Tsai A; BioLegend, San Diego, CA, USA., Yeung BZ; BioLegend, San Diego, CA, USA., Gupta S; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA., Tomai M; 3M Corporate Research and Materials Lab, Saint Paul, MN, USA., Vasilakos J; 3M Drug Delivery Systems, Saint Paul, MN, USA., Shaw GM; Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA., Kang CY; Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada., Moore JP; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA., Subramaniam S; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA., Khatri P; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.; Center for Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA, USA., Montefiori D; Department of Surgery, Duke University School of Medicine, Durham, NC, USA., Kozlowski PA; Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA., Derdeyn CA; Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA. cderdey@emory.edu., Hunter E; Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA. ehunte4@emory.edu., Masopust D; Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA. masopust@umn.edu., Amara RR; Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA. ramara@emory.edu., Pulendran B; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA. bpulend@stanford.edu.; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA. bpulend@stanford.edu.; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA. bpulend@stanford.edu.
المصدر: Nature medicine [Nat Med] 2020 Jun; Vol. 26 (6), pp. 932-940. Date of Electronic Publication: 2020 May 11.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Company Country of Publication: United States NLM ID: 9502015 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-170X (Electronic) Linking ISSN: 10788956 NLM ISO Abbreviation: Nat Med Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature Publishing Company
Original Publication: New York, NY : Nature Pub. Co., [1995-
مواضيع طبية MeSH: Antibodies, Neutralizing/*drug effects , Antibodies, Viral/*drug effects , CD8-Positive T-Lymphocytes/*drug effects , Gene Products, gag/*genetics , Immunity, Cellular/*drug effects , SAIDS Vaccines/*pharmacology , Simian Acquired Immunodeficiency Syndrome/*prevention & control , Simian Immunodeficiency Virus/*immunology, Animals ; Antibodies, Neutralizing/immunology ; Antibodies, Viral/immunology ; CD4-Positive T-Lymphocytes/drug effects ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; Female ; Gene Products, gag/immunology ; Genetic Vectors ; Immunity, Cellular/immunology ; Immunity, Heterologous ; Immunogenicity, Vaccine ; Immunologic Memory/immunology ; Macaca mulatta ; Mucous Membrane ; Vagina
مستخلص: Recent efforts toward an HIV vaccine focus on inducing broadly neutralizing antibodies, but eliciting both neutralizing antibodies (nAbs) and cellular responses may be superior. Here, we immunized macaques with an HIV envelope trimer, either alone to induce nAbs, or together with a heterologous viral vector regimen to elicit nAbs and cellular immunity, including CD8 + tissue-resident memory T cells. After ten vaginal challenges with autologous virus, protection was observed in both vaccine groups at 53.3% and 66.7%, respectively. A nAb titer >300 was generally associated with protection but in the heterologous viral vector + nAb group, titers <300 were sufficient. In this group, protection was durable as the animals resisted six more challenges 5 months later. Antigen stimulation of T cells in ex vivo vaginal tissue cultures triggered antiviral responses in myeloid and CD4 + T cells. We propose that cellular immune responses reduce the threshold of nAbs required to confer superior and durable protection.
References: Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009). (PMID: 19843557)
Gautam, R. et al. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 533, 105–109 (2016). (PMID: 27120156512720410.1038/nature17677)
Shingai, M. et al. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J. Exp. Med. 211, 2061–2074 (2014). (PMID: 25155019417222310.1084/jem.20132494)
Pegu, A. et al. A meta-analysis of passive immunization studies shows that serum-neutralizing antibody titer associates with protection against SHIV challenge. Cell Host Microbe 26, 336–346 (2019). (PMID: 3151377110.1016/j.chom.2019.08.0146755677)
Bar, K. J. et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N. Engl. J. Med. 375, 2037–2050 (2016). (PMID: 27959728529213410.1056/NEJMoa1608243)
Mendoza, P. et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 561, 479–484 (2018). (PMID: 30258136616647310.1038/s41586-018-0531-2)
Sanders, R. W. et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog. 9, e1003618 (2013). (PMID: 24068931377786310.1371/journal.ppat.1003618)
Sanders, R. W. & Moore, J. P. Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol. Rev. 275, 161–182 (2017). (PMID: 28133806529950110.1111/imr.12481)
Sanders, R. W. et al. HIV-1 vaccines. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 349, aac4223 (2015). (PMID: 26089353449898810.1126/science.aac4223)
Pauthner, M. et al. Elicitation of robust tier 2 neutralizing antibody responses in nonhuman primates by HIV envelope trimer immunization using optimized approaches. Immunity 46, 1073–1088 (2017). (PMID: 28636956548323410.1016/j.immuni.2017.05.007)
Pauthner, M. G. et al. Vaccine-induced protection from homologous tier 2 SHIV challenge in nonhuman primates depends on serum-neutralizing antibody titers. Immunity 50, 241–252 (2019). (PMID: 30552025633550210.1016/j.immuni.2018.11.011)
Walker, B. & McMichael, A. The T-cell response to HIV. Cold Spring Harb. Perspect. Med. 2, a007054 (2012). (PMID: 23002014354310710.1101/cshperspect.a007054)
Hansen, S. G. et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523–527 (2011). (PMID: 21562493310276810.1038/nature10003)
Miller, J. D. et al. Human effector and memory CD8 + T cell responses to smallpox and yellow fever vaccines. Immunity 28, 710–722 (2008). (PMID: 1846846210.1016/j.immuni.2008.02.020)
Akondy, R. S. et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8 + T cell response. J. Immunol. 183, 7919–7930 (2009). (PMID: 1993386910.4049/jimmunol.0803903)
Buchbinder, S. P. et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372, 1881–1893 (2008). (PMID: 19012954272101210.1016/S0140-6736(08)61591-3)
Hansen, S. G. et al. Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex E. Science 351, 714–720 (2016). (PMID: 26797147476903210.1126/science.aac9475)
McMichael, A. J. & Koff, W. C. Vaccines that stimulate T cell immunity to HIV-1: the next step. Nat. Immunol. 15, 319–322 (2014). (PMID: 24646598432450410.1038/ni.2844)
Chanzu, N. & Ondondo, B. Induction of potent and long-lived antibody and cellular immune responses in the genitorectal mucosa could be the critical determinant of HIV vaccine efficacy. Front. Immunol. 5, 202 (2014). (PMID: 24847327402111510.3389/fimmu.2014.00202)
Fraser, K. A., Schenkel, J. M., Jameson, S. C., Vezys, V. & Masopust, D. Preexisting high frequencies of memory CD8 + T cells favor rapid memory differentiation and preservation of proliferative potential upon boosting. Immunity 39, 171–183 (2013). (PMID: 23890070397958710.1016/j.immuni.2013.07.003)
Vezys, V. et al. Memory CD8 T-cell compartment grows in size with immunological experience. Nature 457, 196–199 (2009). (PMID: 1900546810.1038/nature07486)
Petitdemange, C. et al. Vaccine induction of antibodies and tissue-resident CD8 + T cells enhances protection against mucosal SHIV infection in young macaques. JCI Insight 4, 126047 (2019). (PMID: 3083087010.1172/jci.insight.126047)
Kasturi, S. P. et al. Adjuvanting a simian immunodeficiency virus vaccine with Toll-like receptor ligands encapsulated in nanoparticles induces persistent antibody responses and enhanced protection in TRIM5α restrictive macaques. J. Virol. 91, e01844 (2017). (PMID: 27928002528687710.1128/JVI.01844-16)
Li, H. et al. Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proc. Natl Acad. Sci. USA 113, E3413–E3422 (2016). (PMID: 272474004914158)
McLinden, R. et al. Association of HIV neutralizing antibody with lower viral load after treatment interruption in a prospective trial (A5170). AIDS 26, 1452 (2012). (PMID: 2276734710.1097/QAD.0b013e3283550b8e)
Ndhlovu, Z. M. et al. Magnitude and kinetics of CD8 + T cell activation during hyperacute HIV Infection impact viral set point. Immunity 43, 591–604 (2015). (PMID: 26362266457577710.1016/j.immuni.2015.08.012)
Chamcha, V. et al. Strong TH1-biased CD4 T cell responses are associated with diminished SIV vaccine efficacy. Sci. Transl. Med. 11, eaav1800 (2019). (PMID: 3174822810.1126/scitranslmed.aav18007227795)
Goulder, P. J. & Watkins, D. I. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat. Rev. Immunol. 8, 619–630 (2008). (PMID: 18617886296302610.1038/nri2357)
Barouch, D. H. et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290, 486–492 (2000). (PMID: 1103992310.1126/science.290.5491.486)
McDermott, A. B. & Koup, R. A. CD8 + T cells in preventing HIV infection and disease. AIDS 26, 1281–1292 (2012). (PMID: 2244125610.1097/QAD.0b013e328353bcaf)
Mudd, P. A. et al. Vaccine-induced CD8 + T cells control AIDS virus replication. Nature 491, 129–133 (2012). (PMID: 2302312310.1038/nature11443)
Carnathan, D. G. et al. Activated CD4 + CCR5 + T cells in the rectum predict increased SIV acquisition in SIVGag/Tat-vaccinated rhesus macaques. Proc. Natl Acad. Sci. USA 112, 518–523 (2015). (PMID: 2555050410.1073/pnas.1407466112)
Benlahrech, A. et al. Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1. Proc. Natl Acad. Sci. USA 106, 19940–19945 (2009). (PMID: 1991806010.1073/pnas.09078981062785271)
Hu, H. et al. Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals. Proc. Natl Acad. Sci. USA 111, 13439–13444 (2014). (PMID: 2519707810.1073/pnas.14004461114169982)
Oh, J. E. et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature 2019, 122–126 (2019). (PMID: 10.1038/s41586-019-1285-1)
Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014). (PMID: 25170049444961810.1126/science.1254536)
Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8 + T cells. Nat. Immunol. 14, 509–513 (2013). (PMID: 23542740363143210.1038/ni.2568)
Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017). (PMID: 28428369577502910.1126/science.aah4573)
Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749–795 (1997). (PMID: 914370610.1146/annurev.immunol.15.1.749)
Baldauf, H. M. et al. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nat. Med. 18, 1682–1687 (2012). (PMID: 2297239710.1038/nm.2964)
McLaren, P. J. et al. Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology 12, 41 (2015). (PMID: 25980612443487810.1186/s12977-015-0165-5)
Paxton, W. A. et al. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat. Med. 2, 412–417 (1996). (PMID: 859795010.1038/nm0496-412)
Abdelwahab, S. F. et al. HIV-1-suppressive factors are secreted by CD4 + T cells during primary immune responses. Proc. Natl Acad. Sci. USA 100, 15006–15010 (2003). (PMID: 1465737910.1073/pnas.2035075100299882)
Walker, B. D., Ahmed, R. & Plotkin, S. Moving ahead an HIV vaccine: use both arms to beat HIV. Nat. Med. 17, 1194–1195 (2011). (PMID: 2198899610.1038/nm.2529)
Gary, E. N. & Kutzler, M. A. Defensive driving: directing HIV-1 vaccine-induced humoral immunity to the mucosa with chemokine adjuvants. J. Immunol. Res. 2018, 3734207 (2018). (PMID: 30648120631181310.1155/2018/3734207)
Dey, A. K. et al. cGMP production and analysis of BG505 SOSIP.664, an extensively glycosylated, trimeric HIV-1 envelope glycoprotein vaccine candidate. Biotechnol. Bioeng. 115, 885–899 (2018). (PMID: 2915093710.1002/bit.26498)
Wu, K., Kim, G. N. & Kang, C. Y. Expression and processing of human immunodeficiency virus type 1 gp160 using the vesicular stomatitis virus New Jersey serotype vector system. J. Gen. Virol. 90, 1135–1140 (2009). (PMID: 1926459710.1099/vir.0.009019-0)
Rose, N. F. et al. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell 106, 539–549 (2001). (PMID: 1155150210.1016/S0092-8674(01)00482-2)
Buller, R. M., Smith, G. L., Cremer, K., Notkins, A. L. & Moss, B. Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317, 813–815 (1985). (PMID: 405858510.1038/317813a0)
Shiver, J. W. et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415, 331–335 (2002). (PMID: 1179701110.1038/415331a)
Kozlowski, P. A. et al. Modified wick method using Weck-Cel sponges for collection of human rectal secretions and analysis of mucosal HIV antibody. J. Acquir. Immune Defic. Syndr. 24, 297–309 (2000). (PMID: 1101514510.1097/00042560-200008010-00001)
Iyer, S. S. et al. Virus-Like particles displaying trimeric simian immunodeficiency virus (SIV) envelope gp160 enhance the breadth of DNA/modified vaccinia virus Ankara SIV vaccine-induced antibody responses in rhesus macaques. J. Virol. 90, 8842–8854 (2016). (PMID: 27466414502142610.1128/JVI.01163-16)
Phillips, B. et al. Impact of poxvirus vector priming, protein coadministration, and vaccine intervals on HIV Gp120 vaccine-elicited antibody magnitude and function in infant macaques. Clin. Vaccine Immunol. 24, e00231 (2017). (PMID: 28814388562967210.1128/CVI.00231-17)
Boliar, S. et al. B-lymphocyte dysfunction in chronic HIV-1 infection does not prevent cross-clade neutralization breadth. J. Virol. 86, 8031–8040 (2012). (PMID: 22623771342165310.1128/JVI.00771-12)
Derdeyn, C. A. et al. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science 303, 2019–2022 (2004). (PMID: 1504480210.1126/science.1093137)
Kilgore, K. M. et al. Characterization and implementation of a diverse simian immunodeficiency virus SIVSM envelope panel in the assessment of neutralizing antibody breadth elicited in rhesus macaques by multimodal vaccines expressing the Sivmac239 envelope. J. Virol. 89, 8130–8151 (2015). (PMID: 26018167452425010.1128/JVI.01221-14)
Li, B. et al. Evidence for potent autologous neutralizing antibody titers and compact envelopes in early infection with subtype C human immunodeficiency virus type 1. J. Virol. 80, 5211–5218 (2006). (PMID: 16699001147212710.1128/JVI.00201-06)
Li, B. et al. Nonpathogenic simian immunodeficiency virus infection of sooty mangabeys is not associated with high levels of autologous neutralizing antibodies. J. Virol. 84, 6248–6253 (2010). (PMID: 20375163287663110.1128/JVI.00295-10)
Lynch, R. M. et al. The B cell response is redundant and highly focused on V1V2 during early subtype C infection in a Zambian seroconverter. J. Virol. 85, 905–915 (2011). (PMID: 2098049510.1128/JVI.02006-10)
Lynch, R. M. et al. Subtype-specific conservation of isoleucine 309 in the envelope V3 domain is linked to immune evasion in subtype C HIV-1 infection. Virology 404, 59–70 (2010). (PMID: 2049439010.1016/j.virol.2010.04.010)
Murphy, M. K. et al. Viral escape from neutralizing antibodies in early subtype A HIV-1 infection drives an increase in autologous neutralization breadth. PLoS Pathog. 9, e1003173 (2013). (PMID: 23468623358512910.1371/journal.ppat.1003173)
Rong, R. et al. Role of V1V2 and other human immunodeficiency virus type 1 envelope domains in resistance to autologous neutralization during clade C infection. J. Virol. 81, 1350–1359 (2007). (PMID: 1707930710.1128/JVI.01839-06)
Rong, R. et al. Unique mutational patterns in the envelope α2 amphipathic helix and acquisition of length in gp120 hypervariable domains are associated with resistance to autologous neutralization of subtype C human immunodeficiency virus type 1. J. Virol. 81, 5658–5668 (2007). (PMID: 17360739190027610.1128/JVI.00257-07)
Rong, R. et al. Escape from autologous neutralizing antibodies in acute/early subtype C HIV-1 infection requires multiple pathways. PLoS Pathog. 5, e1000594 (2009). (PMID: 19763269274159310.1371/journal.ppat.1000594)
Smith, S. A. et al. VH1-69 utilizing antibodies are capable of mediating non-neutralizing Fc-mediated effector functions against the transmitted/founder gp120. Front. Immunol. 9, 3163 (2018). (PMID: 3069721510.3389/fimmu.2018.03163)
Smith, S. A. et al. Diversification in the HIV-1 envelope hyper-variable domains V2, V4, and V5 and higher probability of transmitted/founder envelope glycosylation favor the development of heterologous neutralization breadth. PLoS Pathog. 12, e1005989 (2016). (PMID: 27851829511289010.1371/journal.ppat.1005989)
Montefiori, D. C. Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol. Biol. 485, 395–405 (2009). (PMID: 1902083910.1007/978-1-59745-170-3_26)
Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015). (PMID: 25957682442697210.1016/j.cell.2015.03.031)
Jones, A. T. et al. A trimeric HIV-1 envelope gp120 immunogen induces potent and broad anti-v1v2 loop antibodies against HIV-1 in rabbits and rhesus macaques. J. Virol. 92, e01796 (2018). (PMID: 29237847580973310.1128/JVI.01796-17)
Jones, A. T. et al. HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge. Nat. Commun. 10, 798 (2019). (PMID: 30778066637938510.1038/s41467-019-08739-4)
Rosato, P. C. et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat. Commun. 10, 567 (2019). (PMID: 30718505636213610.1038/s41467-019-08534-1)
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017). (PMID: 28759029566906410.1038/nmeth.4380)
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015). (PMID: 26653891467616210.1186/s13059-015-0844-5)
Li, S. et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat. Immunol. 15, 195–204 (2014). (PMID: 2433622610.1038/ni.2789)
معلومات مُعتمدة: U19 AI090023 United States AI NIAID NIH HHS; UM1 AI100663 United States AI NIAID NIH HHS; P51 OD011132 United States OD NIH HHS; P51 RR000168 United States RR NCRR NIH HHS; P01 AI131251 United States AI NIAID NIH HHS; R01 AI118549 United States AI NIAID NIH HHS; R01 AI048638 United States AI NIAID NIH HHS; P01 AI110657 United States AI NIAID NIH HHS; UM1 AI124436 United States AI NIAID NIH HHS; P30 AI050409 United States AI NIAID NIH HHS; R38 AI140299 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Antibodies, Neutralizing)
0 (Antibodies, Viral)
0 (Gene Products, gag)
0 (SAIDS Vaccines)
تواريخ الأحداث: Date Created: 20200513 Date Completed: 20200908 Latest Revision: 20240214
رمز التحديث: 20240214
مُعرف محوري في PubMed: PMC7303014
DOI: 10.1038/s41591-020-0858-8
PMID: 32393800
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-170X
DOI:10.1038/s41591-020-0858-8