دورية أكاديمية

Ecological drivers of global gradients in avian dispersal inferred from wing morphology.

التفاصيل البيبلوغرافية
العنوان: Ecological drivers of global gradients in avian dispersal inferred from wing morphology.
المؤلفون: Sheard C; School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK. catherine.sheard@bristol.ac.uk.; Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK. catherine.sheard@bristol.ac.uk., Neate-Clegg MHC; Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.; School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA., Alioravainen N; Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.; Department of Environmental and Biological Sciences, University of Eastern Finland, FI-80100, Joensuu, Finland., Jones SEI; Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.; School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 OEX, UK., Vincent C; Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.; Conservation Society of Sierra Leone, 86 Main Road, Freetown, Sierra Leone., MacGregor HEA; Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.; School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK., Bregman TP; Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.; Future-Fit Foundation, 68 Hanbury St, Spitalfields, London, EC2A 2EX, UK., Claramunt S; Department of Natural History, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada.; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 1A1, Canada., Tobias JA; Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.; Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK.
المصدر: Nature communications [Nat Commun] 2020 May 18; Vol. 11 (1), pp. 2463. Date of Electronic Publication: 2020 May 18.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Ecosystem*, Animal Migration/*physiology , Birds/*anatomy & histology , Wings, Animal/*anatomy & histology, Animals ; Phylogeography
مستخلص: An organism's ability to disperse influences many fundamental processes, from speciation and geographical range expansion to community assembly. However, the patterns and underlying drivers of variation in dispersal across species remain unclear, partly because standardised estimates of dispersal ability are rarely available. Here we present a global dataset of avian hand-wing index (HWI), an estimate of wing shape widely adopted as a proxy for dispersal ability in birds. We show that HWI is correlated with geography and ecology across 10,338 (>99%) species, increasing at higher latitudes and with migration, and decreasing with territoriality. After controlling for these effects, the strongest predictor of HWI is temperature variability (seasonality), with secondary effects of diet and habitat type. Finally, we also show that HWI is a strong predictor of geographical range size. Our analyses reveal a prominent latitudinal gradient in HWI shaped by a combination of environmental and behavioural factors, and also provide a global index of avian dispersal ability for use in community ecology, macroecology, and macroevolution.
References: Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980). (PMID: 10.1016/S0003-3472(80)80103-5)
Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005). (PMID: 1592104910.1017/S1464793104006645)
Smith, B. T. et al. The drivers of tropical speciation. Nature 515, 406–409 (2014). (PMID: 2520966610.1038/nature13687)
Mayr, E. Animal Species And Evolution. (Belknap Press, 1963).
Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010). (PMID: 2010010610.1086/650369)
Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan, B. P. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745–758 (2007). (PMID: 1759443010.1111/j.1461-0248.2007.01070.x)
Gaston, K. J. The Structure and Dynamics of Geographic Ranges. (Oxford University Press, 2003).
Fritz, S. A., Jonsson, K. A., Fjeldsa, J. & Rahbek, C. Diversification and biogeographic patterns in four island radiations of passerine birds. Evolution 66, 179–190 (2012). (PMID: 2222087310.1111/j.1558-5646.2011.01430.x)
Pigot, A. L. & Tobias, J. A. Dispersal and the transition to sympatry in vertebrates. Proc. R. Soc. B 282, 20141929 (2015). (PMID: 2562132610.1098/rspb.2014.1929)
Pigot, A. L., Jetz, W., Sheard, C. & Tobias, J. A. The macroecological dynamics of species coexistence in birds. Nat. Ecol. Evol. 2, 1112–1119 (2018). (PMID: 2991534310.1038/s41559-018-0572-9)
MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. (Princeton University Press, 1967).
Ashby, B., Shaw, A. K. & Kokko, H. An inordinate fondness for species with intermediate dispersal abilities. Oikos 129, 311–319 (2020). (PMID: 10.1111/oik.06704)
Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998). (PMID: 10.1038/23876)
Venail, P. A. et al. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452, 210–U257 (2008). (PMID: 1833782110.1038/nature06554)
Viana Duarte, S., Gangoso, L., Bouten, W. & Figuerola, J. Overseas seed dispersal by migratory birds. Proc. R. Soc. B 283, 20152406 (2016). (PMID: 2674061010.1098/rspb.2015.2406)
Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015). (PMID: 2606885110.1126/science.aaa8913)
Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013). (PMID: 10.1111/j.1600-0706.2013.00399.x)
Bregman, T. P., Sekercioglu, C. H. & Tobias, J. A. Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. Biol. Conserv. 169, 372–383 (2014). (PMID: 10.1016/j.biocon.2013.11.024)
Lees, A. C. & Peres, C. A. Gap-crossing movements predict species occupancy in Amazonian forest fragments. Oikos 118, 280–290 (2009). (PMID: 10.1111/j.1600-0706.2008.16842.x)
Dieckmann, U. et al. The evolutionary ecology of dispersal. Trends Ecol. Evol. 14, 88–90 (1999). (PMID: 10.1016/S0169-5347(98)01571-7)
Salisbury, C. L., Seddon, N., Cooney, C. R. & Tobias, J. A. The latitudinal gradient in dispersal constraints: Ecological specialisation drives diversification in tropical birds. Ecol. Lett. 15, 847–855 (2012). (PMID: 2263985810.1111/j.1461-0248.2012.01806.x22639858)
Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518–536 (1998). (PMID: 10.1046/j.1365-2656.1998.00215.x)
Peach, W. J., Hanmer, D. B. & Oatley, T. B. Do southern African songbirds live longer than their European counterparts? Oikos 93, 235–249 (2001). (PMID: 10.1034/j.1600-0706.2001.930207.x)
Forero, M. G., Donazar, J. A., Blas, J. & Hiraldo, F. Causes and consequences of territory change and breeding dispersal distance in the black kite. Ecology 80, 1298–1310 (1999). (PMID: 10.1890/0012-9658(1999)080[1298:CACOTC]2.0.CO;2)
Dawideit, B. A., Phillimore, A. B., Laube, I., Leisler, B. & Bohning-Gaese, K. Ecomorphological predictors of natal dispersal distances in birds. J. Anim. Ecol. 78, 388–395 (2009). (PMID: 1904068510.1111/j.1365-2656.2008.01504.x)
Alzate, A., Plas, F. V. D., Zapata, F. A., Bonte, D. & Etienne, R. S. Incomplete datasets obscure associations between traits affecting dispersal ability and geographic range size of reef fishes in the Tropical Eastern Pacific. Ecol. Evol. 9, 1567–1577 (2019). (PMID: 30847056639235610.1002/ece3.4734)
Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018). (PMID: 2937147110.1126/science.aam9712)
Lockwood, R., Swaddle, J. P. & Rayner, J. M. V. Avian wingtip shape reconsidered: Wingtip shape indices and morphological adaptations to migration. J. Avian Biol. 29, 273–292 (1998). (PMID: 10.2307/3677110)
Kipp, F. A. Der Handflügel-Index als flugbiologisches MaB. Die Vogelwarte 20, 77086 (1959).
Weeks, B. C. & Claramunt, S. Dispersal has inhibited avian diversification in Australasian archipelagoes. Proc. R. Soc. B 281, 20141257 (2014).
Stoddard, M. C. et al. Avian egg shape: form, function, and evolution. Science 356, 1249–1254 (2017). (PMID: 2864243010.1126/science.aaj1945)
Burney, C. W. & Brumfield, R. T. Ecology predicts levels of genetic differentiation in Neotropical birds. Am. Nat. 174, 358–368 (2009). (PMID: 1962723010.1086/603613)
Kennedy, J. D. et al. The influence of wing morphology upon the dispersal, geographical distributions and diversification of the Corvides (Aves; Passeriformes). Proc. R. Soc. B 283, 20161922 (2016). (PMID: 2797452110.1098/rspb.2016.1922)
Chua, V. L. et al. Evolutionary and ecological forces influencing population diversification in Bornean montane passerines. Mol. Phylogenet. Evol. 113, 139–149 (2017). (PMID: 2854597310.1016/j.ympev.2017.05.016)
Claramunt, S., Derryberry, E. P., Remsen, J. V. & Brumfield, R. T. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc. R. Soc. B 279, 1567–1574 (2012). (PMID: 2209038210.1098/rspb.2011.192222090382)
White, A. E. Geographical barriers and dispersal propensity interact to limit range expansions of Himalayan birds. Am. Nat. 188, 99–112 (2016). (PMID: 2732212510.1086/68689027322125)
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012). (PMID: 231238572312385710.1038/nature11631)
Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014). (PMID: 10.1890/13-1917.1)
Tobias, J. A. et al. Territoriality, social bonds, and the evolution of communal signaling in birds. Front. Ecol. Evol. 4, 74 (2016). (PMID: 10.3389/fevo.2016.00074)
Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190012 (2019). (PMID: 10.1098/rstb.2019.0012)
Claramunt, S. & Wright, N. A. In The Extended Specimen: Emerging Frontiers in Collections-Based Ornithological Research (ed Michael S. Webster) 127–141 (CRC Press, 2017).
Sutherland, G., Harestad, A., Price, K. & Lertzman, K. Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv. Ecol. 4, 16 (2000). (PMID: 10.5751/ES-00184-040116)
Whitmee, S. & Orme, C. D. L. Predicting dispersal distance in mammals: a trait-based approach. J. Anim. Ecol. 82, 211–221 (2013). (PMID: 2292434310.1111/j.1365-2656.2012.02030.x)
Hosner, P. A., Tobias, J. A., Braun, E. L. & Kimball, R. T. How do seemingly non-vagile clades accomplish trans-marine dispersal? Trait and dispersal evolution in the landfowl (Aves: Galliformes). Proc. R. Soc. B 284, 20170210 (2017). (PMID: 2846902910.1098/rspb.2017.0210)
Cardillo, M., Orme, C. D. L. & Owens, I. P. F. Testing for latitudinal bias in diversification rates: an example using New World birds. Ecology 86, 2278–2287 (2005). (PMID: 10.1890/05-0112)
Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007). (PMID: 1735557010.1111/j.1461-0248.2007.01020.x)
Tomašových, A. et al. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems. Proc. R. Soc. B 283, 20153027 (2016). (PMID: 2714709410.1098/rspb.2015.302727147094)
Stratford, J. A. & Robinson, W. D. Gulliver travels to the fragmented tropics: Geographic variation in mechanisms of avian extinction. Front. Ecol. Environ. 3, 85–92 (2005). (PMID: 10.1890/1540-9295(2005)003[0085:GTTTFT]2.0.CO;2)
Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018). (PMID: 3037382510.1073/pnas.1804224115)
Sekar, S. A meta‐analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J. Anim. Ecol. 81, 174–184 (2012). (PMID: 2198856110.1111/j.1365-2656.2011.01909.x)
Baliga, V. B., Szabo, I. & Altshuler, D. L. Range of motion in the avian wing is strongly associated with flight behavior and body mass. Sci. Adv. 5, eaaw6670 (2019). (PMID: 31681840681023110.1126/sciadv.aaw6670)
Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008). (PMID: 1851331510.1111/j.1461-0248.2008.01196.x)
Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13, 1–21 (1982). (PMID: 10.1146/annurev.es.13.110182.000245)
Jocque, M., Field, R., Brendonck, L. & Meester, L. D. Climatic control of dispersal–ecological specialization trade-offs: A metacommunity process at the heart of the latitudinal diversity gradient? Glob. Ecol. Biogeogr. 19, 244–252 (2010). (PMID: 10.1111/j.1466-8238.2009.00510.x)
Warrick, D. R. The turning- and linear-maneuvering performance of birds: the cost of efficiency for coursing insectivores. Can. J. Zool. 76, 1063–1079 (1998). (PMID: 10.1139/z98-044)
Waters, J. M., Emerson, B. C., Arribas, P. & McCulloch, G. A. Dispersal reduction: causes, genomic mechanisms, and evolutionary consequences. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.01.012 (2020).
Diamond, J. M., Gilpin, M. E. & Mayr, E. Species-distance relation for birds of the Solomon Archipelago, and the paradox of the great speciators. Proc. Natl Acad. Sci. USA 73, 2160–2164 (1976). (PMID: 1659232810.1073/pnas.73.6.2160)
Cadena, C. D. et al. Systematics, biogeography and diversification of Scytalopus tapaculos (Rhinocryptidae), an enigmatic radiation of Neotropical montane birds. Auk https://doi.org/10.1093/auk/ukz077 (2020).
Luo, B. et al. Wing morphology predicts geographic range size in vespertilionid bats. Sci. Rep. 9, 1–6 (2019). (PMID: 10.1038/s41598-018-37186-2)
Martin, P. R., Montgomerie, R. & Lougheed, S. C. Rapid sympatry explains greater color pattern divergence in high latitude birds. Evolution 64, 336–347 (2010). (PMID: 1974412310.1111/j.1558-5646.2009.00831.x19744123)
Habel, J. C., Tobias, J. A. & Fischer, C. Movement ecology of Afrotropical birds: functional traits provide complementary insights to species identity. Biotropica 51, 894–902 (2019).
Sukumaran, J. & Knowles, L. L. Trait-dependent biogeography: (re)integrating biology into probabilistic historical biogeographical models. Trends Ecol. Evol. 33, 390–398 (2018). (PMID: 2968557910.1016/j.tree.2018.03.01029685579)
Howard, C. et al. Flight range, fuel load and the impact of climate change on the journeys of migrant birds. Proc. R. Soc. B 285, 20172329 (2018). (PMID: 2946726210.1098/rspb.2017.232929467262)
Baldwin, M. W., Winkler, H., Organ, C. L. & Helm, B. Wing pointedness associated with migratory distance in common-garden and comparative studies of stonechats (Saxicola torquata). J. Evol. Biol. 23, 1050–1063 (2010). (PMID: 2034581910.1111/j.1420-9101.2010.01975.x20345819)
McEntee, J. P., Tobias, J. A., Sheard, C. & Burleigh, J. G. Tempo and timing of ecological trait divergence in bird speciation. Nat. Ecol. Evol. 2, 1120–1127 (2018). (PMID: 2991534410.1038/s41559-018-0570-y29915344)
Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020). (PMID: 3193270310.1038/s41559-019-1070-431932703)
Knox, A. Post‐mortem changes in wing‐lengths and wing‐formulae. Ringing Migr. 3, 29–31 (1980). (PMID: 10.1080/03078698.1980.9673758)
BirdLifeInternational. IUCN Red List for Birds, http://www.birdlife.org (2018).
Eyres, A., Böhning‐Gaese, K. & Fritz, S. A. Quantification of climatic niches in birds: adding the temporal dimension. J. Avian Biol. 48, 1517–1531 (2017). (PMID: 10.1111/jav.01308)
Dunning, J. B. CRC Handbook of Avian Body Masses. 2nd edn (CRC Press, 2007).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005). (PMID: 10.1002/joc.1276)
Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018). (PMID: 10.32614/RJ-2018-009)
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010). (PMID: 10.18637/jss.v033.i02)
O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007). (PMID: 10.1007/s11135-006-9018-6)
تواريخ الأحداث: Date Created: 20200520 Date Completed: 20200812 Latest Revision: 20210518
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7235233
DOI: 10.1038/s41467-020-16313-6
PMID: 32424113
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-020-16313-6