دورية أكاديمية

Revisiting the role of CD4 + T cells in cancer immunotherapy-new insights into old paradigms.

التفاصيل البيبلوغرافية
العنوان: Revisiting the role of CD4 + T cells in cancer immunotherapy-new insights into old paradigms.
المؤلفون: Tay RE; Singapore Immunology Network, Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore., Richardson EK; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore., Toh HC; Singapore Immunology Network, Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore. toh.han.chong@singhealth.com.sg.; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore. toh.han.chong@singhealth.com.sg.
المصدر: Cancer gene therapy [Cancer Gene Ther] 2021 Feb; Vol. 28 (1-2), pp. 5-17. Date of Electronic Publication: 2020 May 27.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 9432230 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5500 (Electronic) Linking ISSN: 09291903 NLM ISO Abbreviation: Cancer Gene Ther Subsets: MEDLINE
أسماء مطبوعة: Publication: <2002->: London : Nature Publishing Group
Original Publication: Norwalk, CT : Appleton & Lange, c1994-
مواضيع طبية MeSH: CD4-Positive T-Lymphocytes/*metabolism , Immunotherapy/*methods , Neoplasms/*immunology , T-Lymphocytes/*immunology, Humans
مستخلص: Cancer immunotherapy has revolutionised cancer treatment, with immune checkpoint blockade (ICB) therapy and adoptive cell therapy (ACT) increasingly becoming standard of care across a growing number of cancer indications. While the majority of cancer immunotherapies focus on harnessing the anti-tumour CD8 + cytotoxic T cell response, the potential role of CD4 + 'helper' T cells has largely remained in the background. In this review, we give an overview of the multifaceted role of CD4 + T cells in the anti-tumour immune response, with an emphasis on recent evidence that CD4 + T cells play a bigger role than previously thought. We illustrate their direct anti-tumour potency and their role in directing a sustained immune response against tumours. We further highlight the emerging observation that CD4 + T cell responses against tumours tend to be against self-derived epitopes. These recent trends raise vital questions and considerations that will profoundly affect the rational design of immunotherapies to leverage on the full potential of the immune system against cancer.
References: Wilson RAM, Evans TRJ, Fraser AR, Nibbs RJB. Immune checkpoint inhibitors: new strategies to checkmate cancer. Clin Exp Immunol. 2018;191:133–48. https://doi.org/10.1111/cei.13081 . (PMID: 10.1111/cei.1308129139554)
Linhares DeSousa, Leitner A, Grabmeier-Pfistershammer J, Steinberger K, Not All P. Immune checkpoints are created equal. Front Immunol. 2018;9:1909. https://doi.org/10.3389/fimmu.2018.01909 . (PMID: 10.3389/fimmu.2018.01909)
Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell. 2018;33:581–98. https://doi.org/10.1016/j.ccell.2018.03.005 . (PMID: 10.1016/j.ccell.2018.03.005296349465896787)
Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6:8. https://doi.org/10.1186/s40425-018-0316-z . (PMID: 10.1186/s40425-018-0316-z293579485778665)
Barrett DM, Singh N, Porter DL, Grupp SA, June CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med. 2014;65:333–47. https://doi.org/10.1146/annurev-med-060512-150254 . (PMID: 10.1146/annurev-med-060512-15025424274181)
Frigault MJ, Maus MV. Chimeric antigen receptor-modified T cells strike back. Int Immunol. 2016;28:355–63. https://doi.org/10.1093/intimm/dxw018 . (PMID: 10.1093/intimm/dxw018270213084922025)
Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD. Combination immunotherapy: a road map. J Immunother Cancer. 2017;5:16. https://doi.org/10.1186/s40425-017-0218-5 . (PMID: 10.1186/s40425-017-0218-5282394695319100)
Watanabe K, Kuramitsu S, Posey AD Jr., June CH. Expanding the therapeutic window for CAR T cell therapy in solid tumors: the knowns and unknowns of CAR T cell biology. Front Immunol. 2018;9:2486. https://doi.org/10.3389/fimmu.2018.02486 . (PMID: 10.3389/fimmu.2018.02486304165066212550)
RIbas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5. (PMID: 10.1126/science.aar4060)
Curran MA, Glisson BS. New hope for therapeutic cancer vaccines in the era of immune checkpoint modulation. Annu Rev Med. 2019;70:409–24. https://doi.org/10.1146/annurev-med-050217-121900 . (PMID: 10.1146/annurev-med-050217-12190030379596)
Martin NT, Bell JC. Oncolytic virus combination therapy: killing one bird with two stones. Mol Ther. 2018;26:1414–22. https://doi.org/10.1016/j.ymthe.2018.04.001 . (PMID: 10.1016/j.ymthe.2018.04.001297036995986726)
Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer. 2018;18:313–22. https://doi.org/10.1038/nrc.2018.6 . (PMID: 10.1038/nrc.2018.6294496595912991)
Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, et al. Advances in cancer immunotherapy 2019—latest trends. J Exp Clin Cancer Res. 2019;38:268. https://doi.org/10.1186/s13046-019-1266-0 . (PMID: 10.1186/s13046-019-1266-0312170206585101)
Hiltbold EM, Ciborowski P, Finn OJ. Naturally processed class II epitope from the tumor antigen MUC1 primes human CD4 + T cells. Cancer Res. 1998;58:5066–70. (PMID: 9823312)
Campi G, Crosti M, Consogno G, Facchinetti V, Conti-Fine BM, Longhi R, et al. CD4 + T cells from healthy subjects and colon cancer patients recognize a carcinoembryonic antigen-specific immunodominant epitope. Cancer Res. 2003;63:8481–6. (PMID: 14679013)
Jager E, Jager D, Karbach J, Chen YT, Ritter G, Nagata Y, et al. Identification of NY-ESO-1 epitopes presented by human histocompatibility antigen (HLA)-DRB4*0101–3 and recognized by CD4 (+) T lymphocytes of patients with NY-ESO-1-expressing melanoma. J Exp Med. 2000;191:625–30. https://doi.org/10.1084/jem.191.4.625 . (PMID: 10.1084/jem.191.4.625106848542195843)
Gnjatic S, Atanackovic D, Jäger E, Matsuo M, Selvakumar A, Altorki NK, et al. Survey of naturally occurring CD4 + T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses. Proc Natl Acad Sci USA. 2003;200:8862–7. (PMID: 10.1073/pnas.1133324100)
Francois V, Ottaviani S, Renkvist N, Stockis J, Schuler G, Thielemans K, et al. The CD4 (+) T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res. 2009;69:4335–45. https://doi.org/10.1158/0008-5472.CAN-08-3726 . (PMID: 10.1158/0008-5472.CAN-08-372619435913)
Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17:4550–7. https://doi.org/10.1158/1078-0432.CCR-11-0116 . (PMID: 10.1158/1078-0432.CCR-11-0116214983933131487)
Tran E, Turcotte S, Gros A, Robbins PF, Lu Y-C, Dudley ME, et al. Cancer immunotherapy based on mutation-specific CD4 + T cells in a patient with epithelial cancer. Science. 2014;344:641–5. (PMID: 10.1126/science.1251102)
Keene JA, Forman J. Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med. 1982;155:768–82. https://doi.org/10.1084/jem.155.3.768 . (PMID: 10.1084/jem.155.3.76868011782186611)
Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature. 1998;393:480–3. (PMID: 10.1038/31002)
Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JFAP, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393:478–80. (PMID: 10.1038/30996)
Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR. Induction of a CD8 + cytotoxic T lymphocyte response by cross-priming requires cognate CD4 + T cell help. J Exp Med. 1997;186:65–70. https://doi.org/10.1084/jem.186.1.65 . (PMID: 10.1084/jem.186.1.6592069982198964)
Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med. 1998;187:693–702. https://doi.org/10.1084/jem.187.5.693 . (PMID: 10.1084/jem.187.5.69394809792212165)
Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, et al. CD8 + T cell immunity against a tumor/self-antigen is augmented by CD4 + T helper cells and hindered by naturally occurring T regulatory cells. J Immunol. 2005;174:2591–601. https://doi.org/10.4049/jimmunol.174.5.2591 . (PMID: 10.4049/jimmunol.174.5.2591157284651403291)
Bos R, Sherman LA. CD4 + T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8 + T lymphocytes. Cancer Res. 2010;70:8368–77. https://doi.org/10.1158/0008-5472.CAN-10-1322 . (PMID: 10.1158/0008-5472.CAN-10-1322209403982970736)
Rittig SM, Haentschel M, Weimer KJ, Heine A, Muller MR, Brugger W, et al. Intradermal vaccinations with RNA coding for TAA generate CD8 + and CD4 + immune responses and induce clinical benefit in vaccinated patients. Mol Ther. 2011;19:990–9. https://doi.org/10.1038/mt.2010.289 . (PMID: 10.1038/mt.2010.28921189474)
Aarntzen EH, De Vries IJ, Lesterhuis WJ, Schuurhuis D, Jacobs JF, Bol K, et al. Targeting CD4 (+) T-helper cells improves the induction of antitumor responses in dendritic cell-based vaccination. Cancer Res. 2013;73:19–29. https://doi.org/10.1158/0008-5472.CAN-12-1127 . (PMID: 10.1158/0008-5472.CAN-12-112723087058)
Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H, et al. Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol. 2009;27:4685–92. https://doi.org/10.1200/JCO.2008.20.6789 . (PMID: 10.1200/JCO.2008.20.6789197209232754913)
Piesche M, Hildebrandt Y, Zettl F, Chapuy B, Schmitz M, Wulf G, et al. Identification of a promiscuous HLA DR-restricted T-cell epitope derived from the inhibitor of apoptosis protein survivin. Hum Immunol. 2007;68:572–6. https://doi.org/10.1016/j.humimm.2007.03.007 . (PMID: 10.1016/j.humimm.2007.03.00717584578)
Wang XF, Kerzerho J, Adotevi O, Nuyttens H, Badoual C, Munier G, et al. Comprehensive analysis of HLA-DR- and HLA-DP4-restricted CD4 + T cell response specific for the tumor-shared antigen survivin in healthy donors and cancer patients. J Immunol. 2008;181:431–9. https://doi.org/10.4049/jimmunol.181.1.431 . (PMID: 10.4049/jimmunol.181.1.43118566409)
Berinstein NL, Karkada M, Oza AM, Odunsi K, Villella JA, Nemunaitis JJ, et al. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015;4:e1026529. https://doi.org/10.1080/2162402X.2015.1026529 . (PMID: 10.1080/2162402X.2015.1026529264055844570133)
Brunsvig PF, Kyte JA, Kersten C, Sundstrom S, Moller M, Nyakas M, et al. Telomerase peptide vaccination in NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clin Cancer Res. 2011;17:6847–57. https://doi.org/10.1158/1078-0432.CCR-11-1385 . (PMID: 10.1158/1078-0432.CCR-11-138521918169)
Godet Y, Fabre E, Dosset M, Lamuraglia M, Levionnois E, Ravel P, et al. Analysis of spontaneous tumor-specific CD4 T-cell immunity in lung cancer using promiscuous HLA-DR telomerase-derived epitopes: potential synergistic effect with chemotherapy response. Clin Cancer Res. 2012;18:2943–53. https://doi.org/10.1158/1078-0432.CCR-11-3185 . (PMID: 10.1158/1078-0432.CCR-11-318522407833)
Adotevi O, Dosset M, Galaine J, Beziaud L, Godet Y, Borg C. Targeting antitumor CD4 helper T cells with universal tumor-reactive helper peptides derived from telomerase for cancer vaccine. Hum Vaccin Immunother. 2013;9:1073–7. https://doi.org/10.4161/hv.23587 . (PMID: 10.4161/hv.23587233578603899142)
Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ, et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4 + T cells in human melanoma. Nat Med. 2015;21:81–85. https://doi.org/10.1038/nm.3773 . (PMID: 10.1038/nm.377325531942)
Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692–6. https://doi.org/10.1038/nature14426 . (PMID: 10.1038/nature14426259016824838069)
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–21. https://doi.org/10.1038/nature22991 . (PMID: 10.1038/nature22991286787785577644)
Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–6. https://doi.org/10.1038/nature23003 . (PMID: 10.1038/nature2300328678784)
Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, Offringa R, van der Burg SH. CD8 + CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol. 2007;179:5033–40. https://doi.org/10.4049/jimmunol.179.8.5033 . (PMID: 10.4049/jimmunol.179.8.503317911588)
Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, et al. Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell. 2017;168:487–502. https://doi.org/10.1016/j.cell.2016.12.022 . (PMID: 10.1016/j.cell.2016.12.022281110705312823)
Zander R, Schauder D, Xin G, Nguyen C, Wu X, Zajac A, et al. CD4 (+) T cell help is required for the formation of a cytolytic CD8 (+) T cell subset that protects against chronic infection and cancer. Immunity. 2019;51:1028–42. https://doi.org/10.1016/j.immuni.2019.10.009 . (PMID: 10.1016/j.immuni.2019.10.009318108836929322)
Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, Luoma AM, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574:696–701. https://doi.org/10.1038/s41586-019-1671-8 . (PMID: 10.1038/s41586-019-1671-8316457606858572)
Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, et al. Tumor-reactive CD4 (+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med. 2010;207:637–50. https://doi.org/10.1084/jem.20091918 . (PMID: 10.1084/jem.20091918201569712839156)
Xie Y, Akpinarli A, Maris C, Hipkiss EL, Lane M, Kwon EK, et al. Naive tumor-specific CD4 (+) T cells differentiated in vivo eradicate established melanoma. J Exp Med. 2010;207:651–67. https://doi.org/10.1084/jem.20091921 . (PMID: 10.1084/jem.20091921201569732839147)
Sledzinska A, Vila de Mucha M, Bergerhoff K, Hotblack A, Demane DF, Ghorani E, et al. Regulatory T cells restrain interleukin-2- and Blimp-1-dependent acquisition of cytotoxic function by CD4 (+) T cells. Immunity. 2020;52:e156. https://doi.org/10.1016/j.immuni.2019.12.007 . (PMID: 10.1016/j.immuni.2019.12.007)
Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 2018;564:268–72. https://doi.org/10.1038/s41586-018-0694-x . (PMID: 10.1038/s41586-018-0694-x30479382)
Galaine J, Turco C, Vauchy C, Royer B, Mercier-Letondal P, Queiroz L, et al. CD4 T cells target colorectal cancer antigens upregulated by oxaliplatin. Int J Cancer. 2019;145:3112–25. https://doi.org/10.1002/ijc.32620 . (PMID: 10.1002/ijc.3262031396953)
Kagamu H, Kitano S, Yamaguchi O, Yoshimura K, Horimoto K, Kitazawa M, et al. CD4 (+) T-cell immunity in the peripheral blood correlates with response to anti-PD-1 therapy. Cancer Immunol Res. 2019. https://doi.org/10.1158/2326-6066.CIR-19-0574 .
Laheurte C, Dosset M, Vernerey D, Boullerot L, Gaugler B, Gravelin E, et al. Distinct prognostic value of circulating anti-telomerase CD4 (+) Th1 immunity and exhausted PD-1(+)/TIM-3(+) T cells in lung cancer. Br J Cancer. 2019;121:405–16. https://doi.org/10.1038/s41416-019-0531-5 . (PMID: 10.1038/s41416-019-0531-5313589386738094)
Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease. Nat Rev Drug Disco. 2018;17:823–44. https://doi.org/10.1038/nrd.2018.148 . (PMID: 10.1038/nrd.2018.148)
Owen DL, Sjaastad LE, Farrar MA. Regulatory T cell development in the thymus. J Immunol. 2019;203:2031–41. https://doi.org/10.4049/jimmunol.1900662 . (PMID: 10.4049/jimmunol.1900662315912596910132)
Savage PA, Leventhal DS, Malchow S. Shaping the repertoire of tumor infiltrating effector and regulatory T cells. Immunol Rev. 2014;259:245–58. (PMID: 10.1111/imr.12166)
Legoux FP, Lim JB, Cauley AW, Dikiy S, Ertelt J, Mariani TJ, et al. CD4 + T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity. 2015;43:896–908. https://doi.org/10.1016/j.immuni.2015.10.011 . (PMID: 10.1016/j.immuni.2015.10.011265720614654997)
Savage PA, Klawon DEJ, Miller CH. Regulatory T cell development. Annu Rev. Immunol. 2020. https://doi.org/10.1146/annurev-immunol-100219-020937 .
Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol. 2014;27:1–7. https://doi.org/10.1016/j.coi.2013.12.005 . (PMID: 10.1016/j.coi.2013.12.00524413387)
Jorgensen N, Persson G, Hviid TVF. The Tolerogenic Function of Regulatory T Cells in Pregnancy and Cancer. Front Immunol. 2019;10:911. https://doi.org/10.3389/fimmu.2019.00911 . (PMID: 10.3389/fimmu.2019.00911311340566517506)
Shitara K, Nishikawa H. Regulatory T cells: a potential target in cancer immunotherapy. Ann N. Y Acad Sci. 2018;1417:104–15. https://doi.org/10.1111/nyas.13625 . (PMID: 10.1111/nyas.1362529566262)
Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity. 2007;27:635–46. https://doi.org/10.1016/j.immuni.2007.08.014 . (PMID: 10.1016/j.immuni.2007.08.01417919943)
Guipouy D, Gertner-Dardenne J, Pfajfer L, German Y, Belmonte N, Dupre L. Granulysin- and granzyme-dependent elimination of myeloid cells by therapeutic ova-specific type 1 regulatory T cells. Int Immunol. 2019;31:239–50. https://doi.org/10.1093/intimm/dxy083 . (PMID: 10.1093/intimm/dxy08330778577)
Liu VC, Wong LY, Jang T, Shah AH, Park I, Yang X, et al. Tumor evasion of the immune system by converting CD4 + CD25 - T cells into CD4 + CD25 + T regulatory cells: role of tumor-derived TGF-beta. J Immunol. 2007;178:2883–92. https://doi.org/10.4049/jimmunol.178.5.2883 . (PMID: 10.4049/jimmunol.178.5.288317312132)
Valzasina B, Piconese S, Guiducci C, Colombo MP. Tumor-induced expansion of regulatory T cells by conversion of CD4 + CD25 lymphocytes is thymus and proliferation independent. Cancer Res. 2006;66:4488–95. https://doi.org/10.1158/0008-5472.CAN-05-4217 . (PMID: 10.1158/0008-5472.CAN-05-421716618776)
Sayour EJ, McLendon P, McLendon R, De Leon G, Reynolds R, Kresak J, et al. Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol Immunother. 2015;64:419–27. https://doi.org/10.1007/s00262-014-1651-7 . (PMID: 10.1007/s00262-014-1651-7255555714774199)
Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, et al. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med. 2016;22:679–84. https://doi.org/10.1038/nm.4086 . (PMID: 10.1038/nm.408627111280)
Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of naive CD4 (+) T cells reverses immunosuppression in breast cancer. Cell Res. 2017;27:461–82. https://doi.org/10.1038/cr.2017.34 . (PMID: 10.1038/cr.2017.34282904645385617)
Bonertz A, Weitz J, Pietsch DH, Rahbari NN, Schlude C, Ge Y, et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest. 2009;119:3311–21. https://doi.org/10.1172/JCI39608 . (PMID: 10.1172/JCI39608198091572769188)
Han S, Toker A, Liu ZQ, Ohashi PS. Turning the tide against regulatory T cells. Front Oncol. 2019;9:279. https://doi.org/10.3389/fonc.2019.00279 . (PMID: 10.3389/fonc.2019.00279310580836477083)
Doi T, Muro K, Ishii H, Kato T, Tsushima T, Takenoyama M, et al. A phase I study of the anti-CC chemokine receptor 4 antibody, mogamulizumab, in combination with nivolumab in patients with advanced or metastatic solid tumors. Clin Cancer Res. 2019;25:6614–22. https://doi.org/10.1158/1078-0432.CCR-19-1090 . (PMID: 10.1158/1078-0432.CCR-19-109031455681)
Montler R, Bell RB, Thalhofer C, Leidner R, Feng Z, Fox BA, et al. OX40, PD-1 and CTLA-4 are selectively expressed on tumor-infiltrating T cells in head and neck cancer. Clin Transl Immunol. 2016;5:e70. https://doi.org/10.1038/cti.2016.16 . (PMID: 10.1038/cti.2016.16)
Du X, Tang F, Liu M, Su J, Zhang Y, Wu W, et al. A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Cell Res. 2018;28:416–32. https://doi.org/10.1038/s41422-018-0011-0 . (PMID: 10.1038/s41422-018-0011-0294726915939050)
Scirka B, Szurek E, Pietrzak M, Rempala G, Kisielow P, Ignatowicz L, et al. Anti-GITR antibody treatment increases TCR repertoire diversity of regulatory but not effector T cells engaged in the immune response against B16 melanoma. Arch Immunol Ther Exp (Warsz). 2017;65:553–64. https://doi.org/10.1007/s00005-017-0479-1 . (PMID: 10.1007/s00005-017-0479-1)
Müller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Trans Med. 2015;7:ra188. (PMID: 10.1126/scitranslmed.aac4925)
Ayyoub M, Pignon P, Classe JM, Odunsi K, Valmori D. CD4+ T effectors specific for the tumor antigen NY-ESO-1 are highly enriched at ovarian cancer sites and coexist with, but are distinct from, tumor-associated Treg. Cancer Immunol Res. 2013;1:303–8. https://doi.org/10.1158/2326-6066.CIR-13-0062-T . (PMID: 10.1158/2326-6066.CIR-13-0062-T24777968)
Hindley JP, Ferreira C, Jones E, Lauder SN, Ladell K, Wynn KK, et al. Analysis of the T-cell receptor repertoires of tumor-infiltrating conventional and regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors. Cancer Res. 2011;71:736–46. https://doi.org/10.1158/0008-5472.CAN-10-1797 . (PMID: 10.1158/0008-5472.CAN-10-179721156649)
Sagiv-Barfi I, Czerwinski DK, Levy S, Alam IS, Mayer AT, Gambhir SS, et al. Eradication of spontaneous malignancy by local immunotherapy. Sci Trans Med. 2018;10:eaan4488. (PMID: 10.1126/scitranslmed.aan4488)
Zhang X, Xiao X, Lan P, Li J, Dou Y, Chen W, et al. OX40 costimulation inhibits Foxp3 expression and treg induction via BATF3-dependent and independent mechanisms. Cell Rep. 2018;24:607–18. https://doi.org/10.1016/j.celrep.2018.06.052 . (PMID: 10.1016/j.celrep.2018.06.052300211596095196)
Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266. https://doi.org/10.1038/ncomms9266 . (PMID: 10.1038/ncomms9266263654274570275)
Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R, Chan TA, et al. NF-kappaB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 2017;170:1096–108. https://doi.org/10.1016/j.cell.2017.08.004 . (PMID: 10.1016/j.cell.2017.08.004288863805633372)
Wang D, Quiros J, Mahuron K, Pai CC, Ranzani V, Young A, et al. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep. 2018;23:3262–74. https://doi.org/10.1016/j.celrep.2018.05.050 . (PMID: 10.1016/j.celrep.2018.05.050298983976094952)
Nakagawa H, Sido JM, Reyes EE, Kiers V, Cantor H, Kim HJ. Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity. Proc Natl Acad Sci USA. 2016;113:6248–53. https://doi.org/10.1073/pnas.1604765113 . (PMID: 10.1073/pnas.160476511327185917)
Yates K, Bi K, Haining WN, Cantor H, Kim HJ. Comparative transcriptome analysis reveals distinct genetic modules associated with Helios expression in intratumoral regulatory T cells. Proc Natl Acad Sci USA. 2018;115:2162–7. https://doi.org/10.1073/pnas.1720447115 . (PMID: 10.1073/pnas.172044711529440380)
Ahmadzadeh M, Pasetto A, Jia L, Deniger DC, Stevanovic S, Robbins PF et al. Tumor-infiltrating human CD4 (+) regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci Immunol. 2019;4. https://doi.org/10.1126/sciimmunol.aao4310 .
Garfall AL, Dancy EK, Cohen AD, Hwang WT, Fraietta JA, Davis MM, et al. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv. 2019;3:2812–5. https://doi.org/10.1182/bloodadvances.2019000600 . (PMID: 10.1182/bloodadvances.2019000600315755326784521)
Wang D, Aguilar B, Starr R, Alizadeh D, Brito A, Sarkissian A et al. Glioblastoma-targeted CD4 + CAR T cells mediate superior antitumor activity. JCI Insight. 2018;3. https://doi.org/10.1172/jci.insight.99048 .
Yang Y, Kohler ME, Chien CD, Sauter CT, Jacoby E, Yan C, et al. TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Sci Trans Med. 2017;9:eaag1209. (PMID: 10.1126/scitranslmed.aag1209)
Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med. 2009;206:1495–503. https://doi.org/10.1084/jem.20090681 . (PMID: 10.1084/jem.20090681195282592715080)
Gacerez AT, Sentman CL. T-bet promotes potent antitumor activity of CD4 (+) CAR T cells. Cancer Gene Ther. 2018;25:117–28. https://doi.org/10.1038/s41417-018-0012-7 . (PMID: 10.1038/s41417-018-0012-7295152406021366)
Xhangolli I, Dura B, Lee G, Kim D, Xiao Y, Fan R. Single-cell analysis of CAR-T cell activation reveals a mixed TH1/TH2 response independent of differentiation. Genomics Proteom Bioinforma. 2019;17:129–39. https://doi.org/10.1016/j.gpb.2019.03.002 . (PMID: 10.1016/j.gpb.2019.03.002)
Tsuji T, Matsuzaki J, Ritter E, Miliotto A, Ritter G, Odunsi K, et al. Split T cell tolerance against a self/tumor antigen: spontaneous CD4 + but not CD8 + T cell responses against p53 in cancer patients and healthy donors. PLoS ONE. 2011;6:e23651. https://doi.org/10.1371/journal.pone.0023651 . (PMID: 10.1371/journal.pone.0023651218581913155555)
Ohue Y, Eikawa S, Okazaki N, Mizote Y, Isobe M, Uenaka A, et al. Spontaneous antibody, and CD4 and CD8 T-cell responses against XAGE-1b (GAGED2a) in non-small cell lung cancer patients. Int J Cancer. 2012;131:E649–658. https://doi.org/10.1002/ijc.27359 . (PMID: 10.1002/ijc.2735922109656)
Quandt J, Schlude C, Bartoschek M, Will R, Cid-Arregui A, Scholch S, et al. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology. 2018;7:e1500671. https://doi.org/10.1080/2162402X.2018.1500671 . (PMID: 10.1080/2162402X.2018.1500671305248926279329)
Vauchy C, Gamonet C, Ferrand C, Daguindau E, Galaine J, Beziaud L, et al. CD20 alternative splicing isoform generates immunogenic CD4 helper T epitopes. Int J Cancer. 2015;137:116–26. https://doi.org/10.1002/ijc.29366 . (PMID: 10.1002/ijc.2936625449106)
Johnson DB, Estrada MV, Salgado R, Sanchez V, Doxie DB, Opalenik SR, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582. https://doi.org/10.1038/ncomms10582 . (PMID: 10.1038/ncomms10582268223834740184)
Rodig SJ, Gusenleitner D, Jackson DG, Gjini E, Giobbie-Hurder A, Jin C, et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Trans Med. 2018;10:eaar3442.
Johnson DB, Nixon MJ, Wang Y, Wang DY, Castellanos E, Estrada MV, et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight. 2018;3. https://doi.org/10.1172/jci.insight.120360 .
Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological consequences of MHC-II expression by tumor cells in cancer. Clin Cancer Res. 2019;25:2392–402. https://doi.org/10.1158/1078-0432.Ccr-18-3200 . (PMID: 10.1158/1078-0432.Ccr-18-320030463850)
de Charette M, Marabelle A, Houot R. Turning tumour cells into antigen presenting cells: the next step to improve cancer immunotherapy? Eur J Cancer. 2016;68:134–47. https://doi.org/10.1016/j.ejca.2016.09.010 . (PMID: 10.1016/j.ejca.2016.09.01027755997)
Thibodeau J, Bourgeois-Daigneault MC, Lapointe R. Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. Oncoimmunology. 2012;1:908–16. https://doi.org/10.4161/onci.21205 . (PMID: 10.4161/onci.21205231627583489746)
Calabro S, Liu D, Gallman A, Nascimento MS, Yu Z, Zhang TT, et al. Differential intrasplenic migration of dendritic cell subsets tailors adaptive immunity. Cell Rep. 2016;16:2472–85. https://doi.org/10.1016/j.celrep.2016.07.076 . (PMID: 10.1016/j.celrep.2016.07.076275458856323650)
Hor JL, Whitney PG, Zaid A, Brooks AG, Heath WR, Mueller SN. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4 + and CD8 + T cell activation to localized viral infection. Immunity. 2015;43:554–65. https://doi.org/10.1016/j.immuni.2015.07.020 . (PMID: 10.1016/j.immuni.2015.07.02026297566)
Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K, Hemmi H, et al. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell. 2015;162:1322–37. https://doi.org/10.1016/j.cell.2015.08.004 . (PMID: 10.1016/j.cell.2015.08.004262964224567961)
Wosen JE, Mukhopadhyay D, Macaubas C, Mellins ED. Epithelial MHC class II expression and its role in antigen presentation in the gastrointestinal and respiratory tracts. Front Immunol. 2018;9:2144. https://doi.org/10.3389/fimmu.2018.02144 . (PMID: 10.3389/fimmu.2018.02144303196136167424)
Koyama M, Mukhopadhyay P, Schuster IS, Henden AS, Hulsdunker J, Varelias A, et al. MHC class II antigen presentation by the intestinal epithelium initiates graft-versus-host disease and is influenced by the microbiota. Immunity. 2019;51:885–98 e887. https://doi.org/10.1016/j.immuni.2019.08.011 . (PMID: 10.1016/j.immuni.2019.08.011315423406959419)
Arebro J, Tengroth L, Razavi R, Kumlien Georen S, Winqvist O, Cardell LO. Antigen-presenting epithelial cells can play a pivotal role in airway allergy. J Allergy Clin Immunol. 2016;137:957–60. https://doi.org/10.1016/j.jaci.2015.08.053 . (PMID: 10.1016/j.jaci.2015.08.05326560042)
Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35:S185–98. https://doi.org/10.1016/j.semcancer.2015.03.004 . (PMID: 10.1016/j.semcancer.2015.03.00425818339)
Muenst S, Laubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S. The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med. 2016;279:541–62. https://doi.org/10.1111/joim.12470 . (PMID: 10.1111/joim.1247026748421)
Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77. https://doi.org/10.1038/nrc3258 . (PMID: 10.1038/nrc3258224378713433802)
Sun NY, Chen YL, Wu WY, Lin HW, Chiang YC, Chang CF, et al. Blockade of PD-L1 enhances cancer immunotherapy by regulating dendritic cell maturation and macrophage polarization. Cancers (Basel). 2019;11. https://doi.org/10.3390/cancers11091400 .
Benencia F, Muccioli M, Alnaeeli M. Perspectives on reprograming cancer-associated dendritic cells for anti-tumor therapies. Front Oncol. 2014;4:72. https://doi.org/10.3389/fonc.2014.00072 . (PMID: 10.3389/fonc.2014.00072247789913984996)
König R, Huang L-Y, Germain RN. MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8. Nature. 1992;356:796–8. https://doi.org/10.1038/356796a0 . (PMID: 10.1038/356796a01574118)
Spits H. Development of alphabeta T cells in the human thymus. Nat Rev Immunol. 2002;2:760–72. https://doi.org/10.1038/nri913 . (PMID: 10.1038/nri91312360214)
Zhou L, Chong MM, Littman DR. Plasticity of CD4 + T cell lineage differentiation. Immunity. 2009;30:646–55. https://doi.org/10.1016/j.immuni.2009.05.001 . (PMID: 10.1016/j.immuni.2009.05.00119464987)
Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2020;28:445–89. https://doi.org/10.1146/annurev-immunol-030409-10121 . (PMID: 10.1146/annurev-immunol-030409-10121)
Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4 (+) T cells in CD8 (+) T cell memory. Nat Rev Immunol. 2016;16:102–11. https://doi.org/10.1038/nri.2015.10 . (PMID: 10.1038/nri.2015.10267819394860014)
Borst J, Ahrends T, Babala N, Melief CJM, Kastenmuller W. CD4 (+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18:635–47. https://doi.org/10.1038/s41577-018-0044-0 . (PMID: 10.1038/s41577-018-0044-030057419)
Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, Heath WR, et al. Cognate CD4 (+) T cell licensing of dendritic cells in CD8 (+) T cell immunity. Nat Immunol. 2004;5:1143–8. https://doi.org/10.1038/ni1129 . (PMID: 10.1038/ni112915475958)
Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194:769–79. https://doi.org/10.1084/jem.194.6.769 . (PMID: 10.1084/jem.194.6.769115609932195961)
Ahrends T, Spanjaard A, Pilzecker B, Babala N, Bovens A, Xiao Y, et al. CD4 (+) T cell help confers a cytotoxic T cell effector program including coinhibitory receptor downregulation and increased tissue invasiveness. Immunity. 2017;47:848. https://doi.org/10.1016/j.immuni.2017.10.009 . (PMID: 10.1016/j.immuni.2017.10.00929126798)
Curtsinger JM, Johnson CM, Mescher MF. CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J Immunol. 2003;171:5165–71. https://doi.org/10.4049/jimmunol.171.10.5165 . (PMID: 10.4049/jimmunol.171.10.516514607916)
Janssen EM, Lemmens E, Wolfe T, Christen U, von Herrath MG, Schoenberger SP. CD4 + T cells are required for secondary expansion and memory in CD8 + T lymphocytes. Nature. 2003;421:852–6. (PMID: 10.1038/nature01441)
Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science. 2003;300:337–9. (PMID: 10.1126/science.1082305)
Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science. 2003;300:339–42. (PMID: 10.1126/science.1083317)
Church SE, Jensen SM, Antony PA, Restifo NP, Fox BA. Tumor-specific CD4 + T cells maintain effector and memory tumor-specific CD8 + T cells. Eur J Immunol. 2014;44:69–79. https://doi.org/10.1002/eji.201343718 . (PMID: 10.1002/eji.20134371824114780)
Kennedy R, Celis E. Multiple roles for CD4 + T cells in anti-tumor immune responses. Immunol Rev. 2008;222:129–44. (PMID: 10.1111/j.1600-065X.2008.00616.x)
Takeuchi A, Badr Mel S, Miyauchi K, Ishihara C, Onishi R, Guo Z, et al. CRTAM determines the CD4 + cytotoxic T lymphocyte lineage. J Exp Med. 2016;213:123–38. https://doi.org/10.1084/jem.20150519 . (PMID: 10.1084/jem.20150519266949684710199)
Matsuzaki J, Tsuji T, Luescher IF, Shiku H, Mineno J, Okamoto S. et al. Direct tumor recognition by a human CD4 (+) T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses. Sci Rep. 2015;5:14896. https://doi.org/10.1038/srep14896 . (PMID: 10.1038/srep14896264473324597193)
Reed CM, Cresce ND, Mauldin IS, Slingluff CL Jr., Olson WC. Vaccination with melanoma helper peptides induces antibody responses associated with improved overall survival. Clin Cancer Res. 2015;21:3879–87. https://doi.org/10.1158/1078-0432.CCR-15-0233 . (PMID: 10.1158/1078-0432.CCR-15-0233259671444558239)
Dieu-Nosjean M-C, Giraldo NA, Kaplon H, Germain C, Fridman WH, Sautès-Fridman C. Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev. 2016;271:260–75. (PMID: 10.1111/imr.12405)
تواريخ الأحداث: Date Created: 20200528 Date Completed: 20211229 Latest Revision: 20211229
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7886651
DOI: 10.1038/s41417-020-0183-x
PMID: 32457487
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5500
DOI:10.1038/s41417-020-0183-x