دورية أكاديمية

Resolution of NASH and hepatic fibrosis by the GLP-1R/GcgR dual-agonist Cotadutide via modulating mitochondrial function and lipogenesis.

التفاصيل البيبلوغرافية
العنوان: Resolution of NASH and hepatic fibrosis by the GLP-1R/GcgR dual-agonist Cotadutide via modulating mitochondrial function and lipogenesis.
المؤلفون: Boland ML; Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA., Laker RC; Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA., Mather K; Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA., Nawrocki A; Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark., Oldham S; Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA., Boland BB; Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA., Lewis H; Research and Early Development, Oncology, AstraZeneca, Cambridge, UK., Conway J; Translational Sciences, AstraZeneca, Gaithersburg, MD, USA., Naylor J; Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK., Guionaud S; Global Pathology, AstraZeneca, Cambridge, UK., Feigh M; Gubra, Hørsholm, Denmark., Veidal SS; Gubra, Hørsholm, Denmark., Lantier L; Vanderbilt University Mouse Metabolic Phenotyping Center, Nashville, TN, USA., McGuinness OP; Vanderbilt University Mouse Metabolic Phenotyping Center, Nashville, TN, USA., Grimsby J; Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA., Rondinone CM; Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA., Jermutus L; Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK., Larsen MR; Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark., Trevaskis JL; Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.; Gilead Sciences, Foster City, CA, USA., Rhodes CJ; Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA. Christopher.Rhodes@astrazeneca.com.
المصدر: Nature metabolism [Nat Metab] 2020 May; Vol. 2 (5), pp. 413-431. Date of Electronic Publication: 2020 May 21.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: Germany NLM ID: 101736592 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2522-5812 (Electronic) Linking ISSN: 25225812 NLM ISO Abbreviation: Nat Metab
أسماء مطبوعة: Original Publication: Berlin : Springer Nature, [2019]-
مواضيع طبية MeSH: Glucagon-Like Peptide-1 Receptor/*agonists , Lipogenesis/*drug effects , Liver Cirrhosis/*drug therapy , Mitochondria/*drug effects , Non-alcoholic Fatty Liver Disease/*drug therapy , Peptides/*therapeutic use, Animals ; Blood Glucose/metabolism ; Body Weight ; Diabetes Mellitus, Type 2/complications ; Glucagon-Like Peptide-1 Receptor/genetics ; Glycogen/metabolism ; Liver/drug effects ; Liver/enzymology ; Liver/metabolism ; Liver Cirrhosis/metabolism ; Male ; Mice ; Mice, Knockout ; Mitochondria/metabolism ; Non-alcoholic Fatty Liver Disease/metabolism ; Proteomics
مستخلص: Non-alcoholic fatty liver disease and steatohepatitis are highly associated with obesity and type 2 diabetes mellitus. Cotadutide, a GLP-1R/GcgR agonist, was shown to reduce blood glycemia, body weight and hepatic steatosis in patients with T2DM. Here, we demonstrate that the effects of Cotadutide to reduce body weight, food intake and improve glucose control are predominantly mediated through the GLP-1 signaling, while, its action on the liver to reduce lipid content, drive glycogen flux and improve mitochondrial turnover and function are directly mediated through Gcg signaling. This was confirmed by the identification of phosphorylation sites on key lipogenic and glucose metabolism enzymes in liver of mice treated with Cotadutide. Complementary metabolomic and transcriptomic analyses implicated lipogenic, fibrotic and inflammatory pathways, which are consistent with a unique therapeutic contribution of GcgR agonism by Cotadutide in vivo . Significantly, Cotadutide also alleviated fibrosis to a greater extent than Liraglutide or Obeticholic acid (OCA), despite adjusting dose to achieve similar weight loss in 2 preclinical mouse models of NASH. Thus Cotadutide, via direct hepatic (GcgR) and extra-hepatic (GLP-1R) effects, exerts multi-factorial improvement in liver function and is a promising therapeutic option for the treatment of steatohepatitis.
Competing Interests: COMPETING INTERESTS STATEMENT The authors declare competing interests as defined by Nature Research. Employee of AstraZeneca (R.C.L., K.M., S.O., J.C., J.N., J.G., L.J., C.J.R.). Owns stock in AstraZeneca (K.M., S.O., J.C., J.N., J.G., L.J., C.M.R., J.L.T., C.J.R.).
References: Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018). (PMID: 2893029510.1038/nrgastro.2017.109)
Ibrahim, S. H., Hirsova, P. & Gores, G. J. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut 67, 963–972 (2018). (PMID: 29367207588973710.1136/gutjnl-2017-315691)
Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018). (PMID: 29967350655346810.1038/s41591-018-0104-9)
Cusi, K. Treatment of patients with type 2 diabetes and non-alcoholic fatty liver disease: current approaches and future directions. Diabetologia 59, 1112–1120 (2016). (PMID: 27101131486174810.1007/s00125-016-3952-1)
Bueter, M. & le Roux, C. W. Gastrointestinal hormones, energy balance and bariatric surgery. Int. J. Obes. 35(Suppl. 3), S35–S393 (2011). (PMID: 10.1038/ijo.2011.146)
Ionut, V., Burch, M., Youdim, A. & Bergman, R. N. Gastrointestinal hormones and bariatric surgery-induced weight loss. Obesity 21, 1093–1103 (2013). (PMID: 2351284110.1002/oby.20364)
Meek, C. L., Lewis, H. B., Reimann, F., Gribble, F. M. & Park, A. J. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides 77, 28–37 (2016). (PMID: 2634435510.1016/j.peptides.2015.08.013)
Cohen, M. A. et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J. Clin. Endocrinol. Metab. 88, 4696–4701 (2003). (PMID: 1455744310.1210/jc.2003-030421)
Wynne, K. et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int. J. Obes. 30, 1729–1736 (2006). (PMID: 10.1038/sj.ijo.0803344)
Scott, R., Minnion, J., Tan, T. & Bloom, S. R. Oxyntomodulin analogue increases energy expenditure via the Gcg receptor. Peptides 104, 70–77 (2018). (PMID: 29680267595824410.1016/j.peptides.2018.04.008)
Ambery, P. et al. Cotadutide, a GLP-1 and Gcg receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet 10140, 2607–2618 (2018). (PMID: 10.1016/S0140-6736(18)30726-8)
Day, J. W. et al. A new Gcg and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009). (PMID: 1959750710.1038/nchembio.209)
Henderson, S. J. et al. Robust anti-obesity and metabolic effects of a dual GLP-1/Gcg receptor peptide agonist in rodents and non-human primates. Diabetes Obes. Metab. 18, 1176–1190 (2016). (PMID: 27377054512952110.1111/dom.12735)
Khajavi, N., Biebermann, H., Tschop, M. & DiMarchi, R. Treatment of diabetes and obesity by rationally designed peptide agonists functioning at multiple metabolic receptors. Endocr. Dev. 32, 165–182 (2017). (PMID: 2887338910.1159/000475737)
Tan, T. M. et al. Coadministration of Gcg-like peptide-1 during Gcg infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 62, 1131–1138 (2013). (PMID: 23248172360958010.2337/db12-0797)
Pocai, A. et al. Glucagon-like peptide 1/Gcg receptor dual agonism reverses obesity in mice. Diabetes 58, 2258–2266 (2009). (PMID: 19602537275020910.2337/db09-0278)
Patel, V. et al. Coagonist of GLP-1 and Gcg receptor ameliorates development of non-alcoholic fatty liver disease. Cardiovasc. Hematol. Agents Med. Chem. 16, 35–43 (2018). (PMID: 2935780910.2174/1871525716666180118152158)
Patel, V. et al. Coagonist of Gcg-like peptide-1 and Gcg receptors ameliorates nonalcoholic fatty liver disease. Can. J. Physiol. Pharmacol. 96, 587–596 (2018). (PMID: 2940683210.1139/cjpp-2017-0683)
Valdecantos, M. P. et al. A novel Gcg-like peptide 1/Gcg receptor dual agonist improves steatohepatitis and liver regeneration in mice. Hepatology 65, 950–968 (2017). (PMID: 2788098110.1002/hep.28962)
Hansen, H. H. et al. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov. Today 22, 1707–1718 (2017). (PMID: 2868745910.1016/j.drudis.2017.06.007)
Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 21, 739–746 (2015). (PMID: 2595520910.1016/j.cmet.2015.04.004)
Boland, M. L. et al. Nonalcoholic steatohepatitis severity is defined by a failure in compensatory antioxidant capacity in the setting of mitochondrial dysfunction. World J. Gastroenterol. 24, 1748–1765 (2018). (PMID: 29713129592299410.3748/wjg.v24.i16.1748)
Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005). (PMID: 16308421307442710.1126/science.1120781)
Lawitz, E. J. et al. Acetyl-CoA carboxylase inhibitor GS-0976 for 12 weeks reduces hepatic de novo lipogenesis and steatosis in patients with nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 16, 1983–1991 (2018). (PMID: 2970526510.1016/j.cgh.2018.04.042)
Koo, S.-H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1113 (2005). (PMID: 1614894310.1038/nature03967)
Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 65, 1557–1565 (2017). (PMID: 28130788539735610.1002/hep.29085)
Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016). (PMID: 2660825610.1016/S0140-6736(15)00803-X)
Loomba, R. et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 155, 1463–1473 (2018). (PMID: 30059671631821810.1053/j.gastro.2018.07.027)
Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015). (PMID: 2546816010.1016/S0140-6736(14)61933-4)
Ayala, J. E. et al. Hyperinsulinemic–euglycemic clamps in conscious, unrestrained mice. J. Vis. Exp. e3188 (2011).
Steele, R., Wall, J. S., De Bodo, R. C. & Altszuler, N. Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am. J. Physiol. 187, 15–24 (1956). (PMID: 1336258310.1152/ajplegacy.1956.187.1.15)
Bederman, I. R., Foy, S., Chandramouli, V., Alexander, J. C. & Previs, S. F. Triglyceride synthesis in epididymal adipose tissue: contribution of glucose and non-glucose carbon sources. J. Biol. Chem. 284, 6101–6108 (2009). (PMID: 19114707264908010.1074/jbc.M808668200)
Hasenour, C. M. et al. Mass spectrometry-based microassay of 2 H and 13 C plasma glucose labeling to quantify liver metabolic fluxes in vivo. Am. J. Physiol. Endocrinol. Metab. 309, E191–E203 (2015). (PMID: 25991647450493610.1152/ajpendo.00003.2015)
Young, J. D. INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30, 1333–1335 (2014). (PMID: 24413674399813710.1093/bioinformatics/btu015)
Hughey, C. C. et al. Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice. J. Biol. Chem. 292, 20125–20140 (2017). (PMID: 29038293572400110.1074/jbc.M117.811547)
Chan, T. M. & Exton, J. H. A method for the determination of glycogen content and radioactivity in small quantities of tissues or isolated hepatocytes. Anal. Biochem. 71, 96–105 (1976). (PMID: 127523710.1016/0003-2697(76)90014-2)
Yang, D. et al. Assay of low deuterium enrichment of water by isotopic exchange with [U-13C3]acetone and gas chromatography-mass spectrometry. Anal. Biochem. 258, 315–321 (1998). (PMID: 957084710.1006/abio.1998.2632)
Previs, S. F. et al. Using [ 2 H]water to quantify the contribution of de novo palmitate synthesis in plasma: enabling back-to-back studies. Am. J. Physiol. Endocrinol. Metab. 315, E63–e71 (2018). (PMID: 2935147910.1152/ajpendo.00010.2017)
Burgess, S. C. et al. Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J. Biol. Chem. 279, 48941–48949 (2004). (PMID: 1534767710.1074/jbc.M407120200)
Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Measuring deuterium enrichment of glucose hydrogen atoms by gas chromatography/mass spectrometry. Anal. Chem. 83, 3211–3216 (2011). (PMID: 21413777356269610.1021/ac200012p)
Kristiansen, M. N. et al. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy. World J. Hepatol. 8, 673–684 (2016). (PMID: 27326314490942910.4254/wjh.v8.i16.673)
Barascuk, N. et al. A novel assay for extracellular matrix remodeling associated with liver fibrosis: an enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin. Biochem. 43, 899–904 (2010). (PMID: 2038082810.1016/j.clinbiochem.2010.03.012)
Leeming, D. J. et al. Enzyme-linked immunosorbent serum assay specific for the 7S domain of Collagen Type IV (P4NP 7S): a marker related to the extracellular matrix remodeling during liver fibrogenesis. Hepatol. Res. 42, 482–493 (2012). (PMID: 2222176710.1111/j.1872-034X.2011.00946.x)
Vassiliadis, E. et al. Immunological detection of the type V collagen propeptide fragment, PVCP-1230, in connective tissue remodeling associated with liver fibrosis. Biomarkers 16, 426–433 (2011). (PMID: 2161233810.3109/1354750X.2011.584131)
Ouberai, M. M. et al. Controlling the bioactivity of a peptide hormone in vivo by reversible self-assembly. Nat. Commun. 8, 1026 (2017). (PMID: 29044101564733510.1038/s41467-017-01114-1)
Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005). (PMID: 1591546110.1002/hep.2070115915461)
Glick, D. et al. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol. Cell Biol. 32, 2570–2584 (2012). (PMID: 22547685343450210.1128/MCB.00167-12)
Michopoulos, F. et al. Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and -ultra high performance liquid chromatography coupled to tandem mass spectrometry: applications to serum, urine and tissue extracts. J. Chromatogr. A. 1349, 60–68 (2014). (PMID: 2486178610.1016/j.chroma.2014.05.019)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 23104886353090510.1093/bioinformatics/bts635)
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 161995171619951710.1073/pnas.0506580102)
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011). (PMID: 3106198310619810.1093/bioinformatics/btr260)
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015). (PMID: 26771021470796910.1016/j.cels.2015.12.004)
Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013). (PMID: 3618321361832110.1186/1471-2105-14-7)
Kang, T. et al. Characterization of the molecular mechanisms underlying glucose stimulated insulin secretion from isolated pancreatic beta-cells using post-translational modification specific proteomics (PTMomics). Mol. Cell Proteomics 17, 95–110 (2018). (PMID: 2911399610.1074/mcp.RA117.000217)
The, N. et al. Fast and accurate proteim false discovery rates on large-scale proteomics data sets with percolator 3.0. J. Am. Soc. Mass Spectrom. 27, 1719–1727 (2016). (PMID: 5059416505941610.1007/s13361-016-1460-7)
Käll, L. et al. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923–925 (2007). (PMID: 1795208610.1038/nmeth1113)
Marx, H. et al. A large synthetic peptide and phosphopeptide reference library for mass spectrometry-based proteomics. Nat. Biotechnol. 13, 557–566 (2013). (PMID: 10.1038/nbt.2585)
Navarro, P. et al. General statistical framework for quantitative proteomics by stabe isotope labeling. J. Proteome Res. 13, 1234–1247 (2014). (PMID: 2451213710.1021/pr4006958)
Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795 (2018). (PMID: 29808030610480510.1038/s41588-018-0135-7)
Zhang, M. et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov. 8, 1006–1025 (2018). (PMID: 29903879619267010.1158/2159-8290.CD-17-1371)
Lofgren, L. et al. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J. Lipid. Res. 53, 1690–1700 (2012). (PMID: 22645248354085310.1194/jlr.D023036)
معلومات مُعتمدة: P60 DK020593 United States DK NIDDK NIH HHS; S10 OD025199 United States OD NIH HHS; U24 DK059637 United States DK NIDDK NIH HHS; U2C DK059637 United States DK NIDDK NIH HHS
المشرفين على المادة: 0 (Blood Glucose)
0 (Glp1r protein, mouse)
0 (Glucagon-Like Peptide-1 Receptor)
0 (Peptides)
9005-79-2 (Glycogen)
QL6A9B13HW (cotadutide)
تواريخ الأحداث: Date Created: 20200602 Date Completed: 20201231 Latest Revision: 20210708
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7258337
DOI: 10.1038/s42255-020-0209-6
PMID: 32478287
قاعدة البيانات: MEDLINE
الوصف
تدمد:2522-5812
DOI:10.1038/s42255-020-0209-6