دورية أكاديمية

Inversion recovery zero echo time (IR-ZTE) imaging for direct myelin detection in human brain: a feasibility study.

التفاصيل البيبلوغرافية
العنوان: Inversion recovery zero echo time (IR-ZTE) imaging for direct myelin detection in human brain: a feasibility study.
المؤلفون: Jang H; Department of Radiology, University of California San Diego, San Diego, CA, USA., Carl M; GE Healthcare, San Diego, CA, USA., Ma Y; Department of Radiology, University of California San Diego, San Diego, CA, USA., Searleman AC; Department of Radiology, University of California San Diego, San Diego, CA, USA., Jerban S; Department of Radiology, University of California San Diego, San Diego, CA, USA., Chang EY; Department of Radiology, University of California San Diego, San Diego, CA, USA.; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA., Corey-Bloom J; Department of Neurosciences, University of California, San Diego, CA, USA., Du J; Department of Radiology, University of California San Diego, San Diego, CA, USA.
المصدر: Quantitative imaging in medicine and surgery [Quant Imaging Med Surg] 2020 May; Vol. 10 (5), pp. 895-906.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: AME Pub Country of Publication: China NLM ID: 101577942 Publication Model: Print Cited Medium: Print ISSN: 2223-4292 (Print) Linking ISSN: 22234306 NLM ISO Abbreviation: Quant Imaging Med Surg Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [Hong Kong] : AME Pub.
مستخلص: Background: Myelin alteration is closely associated with neurological diseases such as multiple sclerosis (MS). Unfortunately, due to myelin's extremely short T2* (~0.3 ms or shorter at 3T), it cannot be directly imaged with conventional MR imaging techniques. Recently, ultrashort echo time (UTE) imaging-based methods have been proposed for direct imaging of myelin. In this study, we explore the feasibility and efficacy of inversion recovery prepared zero echo time (IR-ZTE) imaging for direct volumetric imaging of myelin in white matter of the brain in vivo .
Methods: In the proposed method, an adiabatic IR preparation pulse is used to suppress long T2 white matter signal, followed by dual echo ZTE imaging where the remaining long T2 components, including gray matter, are suppressed by dual echo subtraction. In the implementation of ZTE, the sampling strategy introduced in Water- and Fat-Suppressed Proton Projection MRI (WASPI) was incorporated to acquire the k-space data missing due to the radiofrequency (RF) transmit/receiver switching time. The IR-ZTE sequence was implemented on a 3T clinical MR system and evaluated using a myelin phantom composed of six different myelin concentrations (0% to 20%), a cadaveric human brain, four healthy volunteers, and seven MS patients.
Results: In the myelin phantom experiment, the ZTE signal intensity showed high linearity to the myelin concentrations (R 2 =0.98). In the ex vivo and in vivo experiments, the IR-ZTE sequence provided high contrast volumetric imaging of myelin in human brains. The IR-ZTE sequence was able to detect demyelinated foci lesions in all MS patients.
Conclusions: Adiabatic IR prepared dual echo ZTE imaging allows for direct, volumetric imaging of myelin in white matter of the brain in vivo .
Competing Interests: Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/qims.2020.04.13). MC reports other from GE Healthcare, during the conduct of the study. JD serves as an unpaid editorial board member of Quantitative Imaging in Medicine and Surgery. The other authors have no conflicts of interest to declare.
(2020 Quantitative Imaging in Medicine and Surgery. All rights reserved.)
References: Med Phys. 2018 May 15;:. (PMID: 29763997)
Magn Reson Med. 2019 Mar;81(3):1634-1644. (PMID: 30443925)
Magn Reson Med. 2020 Apr;83(4):1168-1177. (PMID: 31746487)
Magn Reson Med. 2018 Aug;80(2):598-608. (PMID: 29314235)
Radiology. 2020 Feb;294(2):362-374. (PMID: 31746689)
Magn Reson Med. 2007 Mar;57(3):554-67. (PMID: 17326184)
Magn Reson Med. 2019 Mar;81(3):1907-1914. (PMID: 30325058)
Neuroimage. 2012 Nov 15;63(3):1038-53. (PMID: 22884937)
J Magn Reson Imaging. 2012 Oct;36(4):841-6. (PMID: 22707436)
Magn Reson Imaging. 1991;9(4):469-76. (PMID: 1779716)
Magn Reson Med. 2016 Jan;75(1):107-14. (PMID: 25639956)
Eur Radiol. 2013 Oct;23(10):2814-22. (PMID: 23760303)
Magn Reson Med. 2020 Feb;83(2):412-426. (PMID: 31502718)
N Engl J Med. 2000 Sep 28;343(13):938-52. (PMID: 11006371)
Brain Imaging Behav. 2012 Jun;6(2):108-36. (PMID: 22434552)
J Magn Reson Imaging. 2003 Jan;17(1):1-10. (PMID: 12500269)
Magn Reson Imaging. 1994;12(7):1047-51. (PMID: 7997092)
Postgrad Med J. 2003 Jan;79(927):11-7. (PMID: 12566545)
Magn Reson Med. 2015 Jan;73(1):70-81. (PMID: 24604728)
IEEE Trans Med Imaging. 2014 Apr;33(4):961-9. (PMID: 24710164)
Neuroimage. 2017 Dec;163:358-367. (PMID: 28964929)
J Magn Reson. 2006 Aug;181(2):342-9. (PMID: 16782371)
Magn Reson Med. 2014 Mar;71(3):1015-23. (PMID: 23606167)
Magn Reson Med. 2012 Feb;67(2):510-8. (PMID: 21721039)
Magn Reson Med. 2008 Dec;60(6):1372-87. (PMID: 19025904)
Ann Neurol. 2011 Feb;69(2):292-302. (PMID: 21387374)
Neuroimage. 2016 Aug 1;136:37-44. (PMID: 27155128)
Radiology. 2008 Mar;246(3):880-6. (PMID: 18195384)
NMR Biomed. 2017 Oct;30(10):. (PMID: 28731616)
Radiology. 2011 Jun;259(3):659-81. (PMID: 21602503)
Magn Reson Med. 2018 Feb;79(2):692-700. (PMID: 28470838)
J Magn Reson. 2012 Jan;214(1):61-7. (PMID: 22047992)
NMR Biomed. 2012 Oct;25(10):1144-51. (PMID: 22290744)
J Magn Reson. 2015 Feb;251:19-25. (PMID: 25557859)
NMR Biomed. 2016 Oct;29(10):1373-80. (PMID: 27496335)
Neuroimage. 2014 Feb 15;87:32-41. (PMID: 24188809)
AJNR Am J Neuroradiol. 2016 Mar;37(3):394-401. (PMID: 26564433)
Magn Reson Med. 2016 Feb;75(2):537-46. (PMID: 25800547)
Magn Reson Med. 2015 Sep;74(3):684-93. (PMID: 25242318)
Magn Reson Med. 2020 Mar;83(3):950-961. (PMID: 31532032)
Neuroimage. 2018 Jul 15;175:1-11. (PMID: 29604452)
Magn Reson Med. 2018 Apr;79(4):2315-2322. (PMID: 29314215)
Magn Reson Med. 2018 Aug;80(2):538-547. (PMID: 29271083)
Neuroradiology. 2003 Dec;45(12):887-92. (PMID: 14508620)
Magn Reson Imaging. 2016 Feb;34(2):75-80. (PMID: 26435460)
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9605-10. (PMID: 22628562)
Magn Reson Imaging. 2017 May;38:87-94. (PMID: 28038965)
Arch Neurol. 1983 Feb;40(2):116-8. (PMID: 6824443)
Magn Reson Med. 2013 Aug;70(2):328-32. (PMID: 23776142)
Magn Reson Med. 2016 Sep;76(3):814-25. (PMID: 26381890)
Magn Reson Med. 2011 Jul;66(1):24-31. (PMID: 21574183)
Magn Reson Med. 2018 Jun;79(6):2912-2922. (PMID: 28971513)
معلومات مُعتمدة: T32 EB005970 United States EB NIBIB NIH HHS
فهرسة مساهمة: Keywords: Inversion recovery (IR); multiple sclerosis (MS); myelin; ultrashort echo time (UTE); zero echo time (ZTE)
تواريخ الأحداث: Date Created: 20200604 Latest Revision: 20220414
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7242298
DOI: 10.21037/qims.2020.04.13
PMID: 32489915
قاعدة البيانات: MEDLINE
الوصف
تدمد:2223-4292
DOI:10.21037/qims.2020.04.13