دورية أكاديمية

Targeting NLRP3 and Staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages.

التفاصيل البيبلوغرافية
العنوان: Targeting NLRP3 and Staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages.
المؤلفون: Chow SH; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia., Deo P; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia., Yeung ATY; The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK., Kostoulias XP; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia., Jeon Y; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia., Gao ML; Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.; National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China., Seidi A; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia., Olivier FAB; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia., Sridhar S; The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK., Nethercott C; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia., Cameron D; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia., Robertson AAB; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia., Robert R; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia., Mackay CR; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia., Traven A; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia., Jin ZB; Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.; National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China., Hale C; The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK., Dougan G; The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.; Department of Medicine, Addenbrookes Hospital, Cambridge, UK., Peleg AY; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.; Department of Infectious Diseases, the Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia., Naderer T; Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia.
المصدر: Journal of leukocyte biology [J Leukoc Biol] 2020 Sep; Vol. 108 (3), pp. 967-981. Date of Electronic Publication: 2020 Jun 12.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 8405628 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1938-3673 (Electronic) Linking ISSN: 07415400 NLM ISO Abbreviation: J Leukoc Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2023- : Oxford : Oxford University Press
Original Publication: New York : Alan R. Liss, c1984-
مواضيع طبية MeSH: Staphylococcus aureus*/physiology, Bacterial Proteins/*antagonists & inhibitors , Bacterial Toxins/*antagonists & inhibitors , Exotoxins/*antagonists & inhibitors , Induced Pluripotent Stem Cells/*cytology , Leukocidins/*antagonists & inhibitors , Macrophages/*drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/*antagonists & inhibitors , Receptor, Anaphylatoxin C5a/*drug effects, Animals ; CD11b Antigen/immunology ; CRISPR-Cas Systems ; Cell Differentiation ; Cells, Cultured ; Exotoxins/deficiency ; Gene Knock-In Techniques ; Humans ; Interleukin-1beta/metabolism ; Leukocyte Common Antigens/physiology ; Lung/immunology ; Lung/microbiology ; Macrophages/cytology ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Monocytes/cytology ; Peptide Fragments/immunology ; Pneumonia, Staphylococcal/immunology ; Protein Subunits ; Receptor, Anaphylatoxin C5a/deficiency ; Receptor, Anaphylatoxin C5a/genetics ; Receptor, Anaphylatoxin C5a/physiology ; Recombinant Proteins/metabolism
مستخلص: Staphylococcus aureus causes necrotizing pneumonia by secreting toxins such as leukocidins that target front-line immune cells. The mechanism by which leukocidins kill innate immune cells and trigger inflammation during S. aureus lung infection, however, remains unresolved. Here, we explored human-induced pluripotent stem cell-derived macrophages (hiPSC-dMs) to study the interaction of the leukocidins Panton-Valentine leukocidin (PVL) and LukAB with lung macrophages, which are the initial leukocidin targets during S. aureus lung invasion. hiPSC-dMs were susceptible to the leukocidins PVL and LukAB and both leukocidins triggered NLPR3 inflammasome activation resulting in IL-1β secretion. hiPSC-dM cell death after LukAB exposure, however, was only temporarily dependent of NLRP3, although NLRP3 triggered marked cell death after PVL treatment. CRISPR/Cas9-mediated deletion of the PVL receptor, C5aR1, protected hiPSC-dMs from PVL cytotoxicity, despite the expression of other leukocidin receptors, such as CD45. PVL-deficient S. aureus had reduced ability to induce lung IL-1β levels in human C5aR1 knock-in mice. Unexpectedly, inhibiting NLRP3 activity resulted in increased wild-type S. aureus lung burdens. Our findings suggest that NLRP3 induces macrophage death and IL-1β secretion after PVL exposure and controls S. aureus lung burdens.
(©2020 Society for Leukocyte Biology.)
References: Lee AS, de Lencastre H, Garau J, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4:18033.
DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet. 2010;375(9725):1557-1568.
Shopsin B, Kaveri SV, Bayry J. Tackling difficult Staphylococcus aureus infections: antibodies show the way. Cell Host Microbe. 2016;20(5):555-557.
Spaan AN, van Strijp JAG, Torres VJ. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol. 2017;15(7):435-447.
Gillet Y, Issartel B, Vanhems P, et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet. 2002;359(9308):753-759.
Peleg AY, Munckhof WJ. Fatal necrotising pneumonia due to community-acquired methicillin-resistant Staphylococcus aureus (MRSA). Med J Aust. 2004;181(4):228-229.
Seilie ES, Wardenburg JB. Staphylococcus aureus pore-forming toxins: the interface of pathogen and host complexity. Semin Cell Dev Biol. 2017;72:101-116.
Kitur K, Wachtel S, Brown A, et al. Necroptosis promotes Staphylococcus aureus clearance by inhibiting excessive inflammatory signaling. Cell Rep. 2016;16(8):2219-2230.
Cohen TS, Hilliard JJ, Jones-Nelson O, et al. Staphylococcus aureus alpha toxin potentiates opportunistic bacterial lung infections. Sci Transl Med. 2016;8(329):329ra31.
Holzinger D, Gieldon L, Mysore V, et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol. 2012;92(5):1069-1081.
Vandenesch F, Couzon F, Boisset S, et al. The Panton-Valentine leukocidin is a virulence factor in a murine model of necrotizing pneumonia. J Infect Dis. 2010;201(6):967-969. author reply 9-70.
Labandeira-Rey M, Couzon F, Boisset S, et al. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science. 2007;315(5815):1130-1133.
Bubeck Wardenburg J, Palazzolo-Ballance AM, Otto M, Schneewind O, DeLeo FR. Panton-Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J Infect Dis. 2008;198(8):1166-1170.
Diep BA, Chan L, Tattevin P, et al. Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. Proc Natl Acad Sci USA. 2010;107(12):5587-5592.
Diep BA, Le VT, Badiou C, et al. IVIG-mediated protection against necrotizing pneumonia caused by MRSA. Sci Transl Med. 2016;8(357):357ra124.
Prince A, Wang H, Kitur K, Parker D. Humanized mice exhibit increased susceptibility to Staphylococcus aureus pneumonia. J Infect Dis. 2016;215(9):1386-1395.
Perret M, Badiou C, Lina G, et al. Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cell Microbiol. 2012;14(7):1019-1036.
Labrousse D, Perret M, Hayez D, et al. Kineret(R)/IL-1ra blocks the IL-1/IL-8 inflammatory cascade during recombinant Panton Valentine Leukocidin-triggered pneumonia but not during S. aureus infection. PLoS One. 2014;9(6):e97546.
Pires S, Parker D. IL-1beta activation in response to Staphylococcus aureus lung infection requires inflammasome-dependent and independent mechanisms. Eur J Immunol. 2018;48(10):1707-1716.
Cohen TS, Boland ML, Boland BB, et al. S. aureus evades macrophage killing through NLRP3-dependent effects on mitochondrial trafficking. Cell Rep. 2018;22(9):2431-2441.
Kebaier C, Chamberland RR, Allen IC, et al. Staphylococcus aureus alpha-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis. 2012;205(5):807-817.
Karsten CM, Laumonnier Y, Eurich B, et al. Monitoring and cell-specific deletion of C5aR1 using a novel floxed GFP-C5aR1 reporter knock-in mouse. J Immunol. 2015;194(4):1841-1855.
Spaan AN, Henry T, van Rooijen WJ, et al. The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe. 2013;13(5):584-594.
Spaan AN, Schiepers A, de Haas CJ, et al. Differential interaction of the Staphylococcal toxins Panton-Valentine leukocidin and gamma-hemolysin CB with human C5a receptors. J Immunol. 2015;195(3):1034-1043.
Tromp AT, Van Gent M, Abrial P, et al. Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton-Valentine leukocidin. Nat Microbiol. 2018;3(6):708-817.
DuMont AL, Yoong P, Day CJ, et al. Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc Natl Acad Sci USA. 2013;110(26):10794-10799.
He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 2015;25(12):1285-1298.
Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666-671.
Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660-665.
Melehani JH, James DB, DuMont AL, Torres VJ, Duncan JA. Staphylococcus aureus leukocidin A/B (LukAB) kills human monocytes via host NLRP3 and ASC when extracellular, but not intracellular. PLoS Pathog. 2015;11(6):e1004970.
Balasubramanian D, Ohneck EA, Chapman J, et al. Staphylococcus aureus coordinates leukocidin expression and pathogenesis by sensing metabolic fluxes via RpiRc. MBio. 2016;7(3):e00818-16.
Kitur K, Parker D, Nieto P, et al. Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage. PLoS Pathog. 2015;11(4):e1004820.
Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547-551.
Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841-845.
Alasoo K, Martinez FO, Hale C, et al. Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription. Sci Rep. 2015;5:12524.
Yeung ATY, Hale C, Lee AH, et al. Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis. Nat Commun. 2017;8:15013.
Buchrieser J, James W, Moore MD. Human induced pluripotent stem cell-derived macrophages share ontogeny with MYB-independent tissue-resident macrophages. Stem Cell Rep. 2017;8(2):334-345.
Lee CZW, Kozaki T, Ginhoux F. Studying tissue macrophages in vitro: are iPSC-derived cells the answer? Nat Rev Immunol. 2018;18(11):716-725.
Hale C, Yeung A, Goulding D, et al. Induced pluripotent stem cell derived macrophages as a cellular system to study salmonella and other pathogens. PLoS One. 2015;10(5):e0124307.
Lee H, Zahra D, Vogelzang A, et al. Human C5aR knock-in mice facilitate the production and assessment of anti-inflammatory monoclonal antibodies. Nat Biotechnol. 2006;24(10):1279-1284.
Speir M, Lawlor KE, Glaser SP, et al. Eliminating Legionella by inhibiting BCL-XL to induce macrophage apoptosis. Nat Microbiol. 2016;1:15034.
Coll RC, Robertson AA, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21(3):248-255.
Lachmann N, Ackermann M, Frenzel E, et al. Large-scale hematopoietic differentiation of human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies. Stem Cell Rep. 2015;4(2):282-296.
Rathkey JK, Zhao J, Liu Z, et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol. 2018;3(26):eaat2738.
Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1-2):213-227.
Rashidi M, Simpson DS, Hempel A, et al. The pyroptotic cell death effector gasdermin D is activated by gout-associated uric acid crystals but is dispensable for cell death and IL-1β release. J Immunol. 2019;203(3):736.
Kobayashi SD, Malachowa N, Whitney AR, et al. Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis. 2011;204(6):937-941.
Lipinska U, Hermans K, Meulemans L, et al. Panton-Valentine leukocidin does play a role in the early stage of Staphylococcus aureus skin infections: a rabbit model. PLoS One. 2011;6(8):e22864.
Tseng CW, Biancotti JC, Berg BL, et al. Increased susceptibility of humanized NSG mice to Panton-Valentine leukocidin and staphylococcus aureus skin infection. PLoS Pathog. 2015;11(11):e1005292.
Badiou C, Dumitrescu O, George N, et al. Rapid detection of Staphylococcus aureus Panton-Valentine leukocidin in clinical specimens by enzyme-linked immunosorbent assay and immunochromatographic tests. J Clin Microbiol. 2010;48(4):1384-1390.
Rouha H, Badarau A, Visram ZC, et al. Five birds, one stone: neutralization of alpha-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs. 2015;7(1):243-254.
Pio R, Ajona D, Ortiz-Espinosa S, Mantovani A, Lambris JD. Complementing the cancer-immunity cycle. Front Immunol. 2019;10:774.
Wang X, Eagen WJ, Lee JC. Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles. Proc Natl Acad Sci USA. 2020;117(6):3174-3184.
Vince JE, De Nardo D, Gao W, et al. The mitochondrial apoptotic effectors BAX/BAK activate caspase-3 and -7 to trigger NLRP3 inflammasome and caspase-8 driven IL-1beta activation. Cell Rep. 2018;25(9):2339-2353 e4.
فهرسة مساهمة: Keywords: NLRP3; inflammation; macrophage; pneumonia; staphylococcus; toxin
المشرفين على المادة: 0 (Bacterial Proteins)
0 (Bacterial Toxins)
0 (C5AR1 protein, human)
0 (CD11b Antigen)
0 (Exotoxins)
0 (ITGAM protein, human)
0 (Interleukin-1beta)
0 (Leukocidins)
0 (NLR Family, Pyrin Domain-Containing 3 Protein)
0 (NLRP3 protein, human)
0 (Panton-Valentine leukocidin)
0 (Peptide Fragments)
0 (Protein Subunits)
0 (Receptor, Anaphylatoxin C5a)
0 (Recombinant Proteins)
0 (leukocidin AB, Staphylococcus aureus)
EC 3.1.3.48 (Leukocyte Common Antigens)
EC 3.1.3.48 (PTPRC protein, human)
تواريخ الأحداث: Date Created: 20200613 Date Completed: 20210209 Latest Revision: 20210209
رمز التحديث: 20231215
DOI: 10.1002/JLB.4MA0420-497R
PMID: 32531864
قاعدة البيانات: MEDLINE
الوصف
تدمد:1938-3673
DOI:10.1002/JLB.4MA0420-497R