Multimeric TAT peptides are effective in vitro inhibitors of Staphylococcus saprophyticus.

التفاصيل البيبلوغرافية
العنوان: Multimeric TAT peptides are effective in vitro inhibitors of Staphylococcus saprophyticus.
المؤلفون: Chiongson JBV; Department of Chemistry, College of Science, De La Salle University, Manila, Philippines.; Department of Chemistry and Physics, College of Liberal Arts, Sciences and Education, University of San Agustin, Iloilo City, Philippines., Sabido EM; Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines., Lin KG; Genomics Research Center, Academia Sinica, Taipei, Taiwan., Alea GV; Department of Chemistry, College of Science, De La Salle University, Manila, Philippines., Dalisay DS; Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City, Philippines., Wu SH; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan., Saludes JP; Department of Chemistry and Physics, College of Liberal Arts, Sciences and Education, University of San Agustin, Iloilo City, Philippines.; Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines.
المصدر: Chemical biology & drug design [Chem Biol Drug Des] 2020 Dec; Vol. 96 (6), pp. 1348-1354. Date of Electronic Publication: 2020 Jun 20.
نوع المنشور: Letter; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101262549 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1747-0285 (Electronic) Linking ISSN: 17470277 NLM ISO Abbreviation: Chem Biol Drug Des Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford : Wiley-Blackwell, 2006-
مواضيع طبية MeSH: Anti-Bacterial Agents/*pharmacology , Staphylococcus saprophyticus/*drug effects , tat Gene Products, Human Immunodeficiency Virus/*pharmacology, Amino Acid Sequence ; Anti-Bacterial Agents/chemistry ; Chromatography, High Pressure Liquid ; Humans ; Microbial Sensitivity Tests ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Staphylococcus saprophyticus/growth & development ; Structure-Activity Relationship ; tat Gene Products, Human Immunodeficiency Virus/chemistry
مستخلص: TAT (48-60) is a tridecapeptide from the envelope protein of HIV that was previously shown to possess cell-penetrating properties and antibacterial activity, making it a potential drug delivery agent for anticancer drugs and as antibacterial compound. Previous reports indicated that dimerization enhances the desired bioactivity of TAT; hence, we sought to synthesize multimeric TAT peptides. Herein, we describe the effects of multimerization on the antibacterial activity and secondary structure of the peptide. Terminal modifications such as N-acetylation and C-amidation were employed in the design. TATp monomer, dimer, and tetramer were synthesized using solid-phase peptide synthesis, purified by reversed-phase HPLC, and then characterized by mass spectrometry. Multimerization of the peptide did not change the secondary structure conformation. The CD analysis revealed a polyproline-II conformation for all peptide designs. Thus, this study provides a method of increasing the biological activity of the peptide by multimerization while retaining the secondary conformation of its monomeric unit. Furthermore, the bacteria Staphylococcus saprophyticus was found to be susceptible to the dimer and tetramer, with MIC 50 of 12.50 μm and <1.56 μm, respectively. This suggests a structure-activity relationship whereby the antibacterial activity increases with increase in valency.
(© 2020 John Wiley & Sons Ltd.)
References: Cooper, G. M. (2000). Structure of the Plasma Membrane. The Cell: A Molecular Approach, Sunderland (MA): Sinauer Associates. https://www.ncbi.nlm.nih.gov/books/NBK9898/.
Durzyńska, J., Przysiecka, Ł., Nawrot, R., Barylski, J., Nowicki, G., Warowicka, A., … Goździcka-Józefiak, A. (2015). Viral and other cell-penetrating peptides as vectors of therapeutic agents in medicine. The Journal of Pharmacology and Experimental Therapeutics, 354(1), 32-42. https://doi.org/10.1124/jpet.115.223305.
Ernst, C. M., Staubitz, P., Mishra, N. N., Yang, S.-J., Hornig, G., Kalbacher, H., … Peschel, A. (2009). The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Path, 5(11), e1000660. https://doi.org/10.1371/journal.ppat.1000660.
Foster, T. (1996). Staphylococcus. In S. Baron (Ed.), Medical microbiology, 4th edn. Galveston, TX: University of Texas Medical Branch.
Frankel, A. D., & Pabo, C. O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 55(6), 1189-1193. https://doi.org/10.1016/0092-8674(88)90263-2.
Hernandez-Gordillo, V., Geisler, I., & Chmielewski, J. (2014). Dimeric unnatural polyproline-rich peptides with enhanced antibacterial activity. Bioorganic & Medicinal Chemistry Letters, 24(2), 556-559. https://doi.org/10.1016/j.bmcl.2013.12.023.
Jin, T., Bokarewa, M., Foster, T., Mitchell, J., Higgins, J., & Tarkowski, A. (2004). Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. Journal of Immunology, 172(2), 1169-1176. https://doi.org/10.4049/jimmunol.172.2.1169.
Jung, H. J., Jeong, K.-S., & Lee, D. G. (2008). Effective antibacterial action of tat (47-58) by increased uptake into bacterial cells in the presence of trypsin. Journal of Microbiology and Biotechnology, 18(5), 990-996.
Krimm, S., & Mark, J. E. (1968). Conformations of polypeptides with ionized side chains of equal length. Proceedings of the National Academy of Sciences of the USA, 60(4), 1122-1129. https://doi.org/10.1073/pnas.60.4.1122.
Kuroda, M., Yamashita, A., Hirakawa, H., Kumano, M., Morikawa, K., Higashide, M., … Ohta, T. (2005). Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proceedings of the National Academy of Sciences, 102(37), 13272-13277. https://doi.org/10.1073/pnas.0502950102.
Li, M., Cha, D. J., Lai, Y., Villaruz, A. E., Sturdevant, D. E., & Otto, M. (2007). The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Molecular Microbiology, 66(5), 1136-1147. https://doi.org/10.1111/j.1365-2958.2007.05986.x.
Lindgren, M., Hällbrink, M., Prochiantz, A., & Langel, Ü. (2000). Cell-penetrating peptides. Trends in Pharmacological Sciences, 21(3), 99-103. https://doi.org/10.1016/S0165-6147(00)01447-4.
Lopes, J. L. S., Miles, A. J., Whitmore, L., & Wallace, B. A. (2014). Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: Applications in secondary structure analyses. Protein Science: A Publication of the Protein Society, 23(12), 1765-1772. https://doi.org/10.1002/pro.2558.
Madani, F., Lindberg, S., Langel, Ü., Futaki, S., & Gräslund, A. (2011). Mechanisms of cellular uptake of cell-penetrating peptides. Journal of Biophysics, 2011, e414729. https://doi.org/10.1155/2011/414729.
Merrifield, R. B. (1963). Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society, 85(14), 2149-2154. https://doi.org/10.1021/ja00897a025.
Monreal, I. A., Liu, Q., Tyson, K., Bland, T., Dalisay, D. S., Adams, E. V., … Saludes, J. P. (2015). Branched dimerization of Tat peptide improves permeability to HeLa and hippocampal neuronal cells. Chemical Communications (Cambridge, England), 51(25), 5463-5466. https://doi.org/10.1039/c5cc00882d.
Onyango, L. A., & Alreshidi, M. M. (2018). Adaptive metabolism in Staphylococci: Survival and persistence in environmental and clinical settings [Review Article]. Journal of Pathogens, 2018, 1-11. https://doi.org/10.1155/2018/1092632.
Park, S.-H., Doh, J., Park, S. I., Lim, J. Y., Kim, S. M., Youn, J.-I., … Sung, Y. C. (2010). Branched oligomerization of cell-permeable peptides markedly enhances the transduction efficiency of adenovirus into mesenchymal stem cells. Gene Therapy, 17(8), 1052-1061. https://doi.org/10.1038/gt.2010.58.
Payne, M. E., & Grayson, S. M. (2018). Characterization of synthetic polymers via matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. Journal of Visualized Experiments: Jove, 136, https://doi.org/10.3791/57174.
Rucker, A. L., & Creamer, T. P. (2002). Polyproline II helical structure in protein unfolded states: Lysine peptides revisited. Protein Science: A Publication of the Protein Society, 11(4), 980-985.
Ruzza, P., Calderan, A., Guiotto, A., Osler, A., & Borin, G. (2004). Tat cell-penetrating peptide has the characteristics of a poly(proline) II helix in aqueous solution and in SDS micelles. Journal of Peptide Science, 10(7), 423-426. https://doi.org/10.1002/psc.558.
Sajadi, S. N., Kaboosi, H., & Ghadikolii, F. P. (2017). Relationship between antibiotic resistance patterns and coagulase in clinical isolates of Staphylococcus aureus in Nowshahr and Chalous. Zahedan Journal of Research in Medical Sciences, 19(11), https://doi.org/10.5812/zjrms.55079.
Sieprawska-Lupa, M., Mydel, P., Krawczyk, K., Wójcik, K., Puklo, M., Lupa, B., … Potempa, J. (2004). Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrobial Agents and Chemotherapy, 48(12), 4673-4679. https://doi.org/10.1128/AAC.48.12.4673-4679.2004.
Solomon, K. R., Velders, G. J. M., Wilson, S. R., Madronich, S., Longstreth, J., Aucamp, P. J., & Bornman, J. F. (2016). Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 19(7), 289-304. https://doi.org/10.1080/10937404.2016.1175981.
Stapley, B. J., & Creamer, T. P. (1999). A survey of left-handed polyproline II helices. Protein Science: A Publication of the Protein Society, 8(3), 587-595. https://doi.org/10.1110/ps.8.3.587.
Subrizi, A., Tuominen, E., Bunker, A., Róg, T., Antopolsky, M., & Urtti, A. (2012). Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. Journal of Controlled Release: Official Journal of the Controlled Release Society, 158(2), 277-285. https://doi.org/10.1016/j.jconrel.2011.11.007.
Szafrańska, A. K., Junker, V., Steglich, M., & Nübel, U. (2019). Rapid cell division of Staphylococcus aureus during colonization of the human nose. BMC Genomics, 20(1), 229. https://doi.org/10.1186/s12864-019-5604-6.
Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., & Bannerjee, S. K. (2012). Drug delivery systems: An updated review. International Journal of Pharmaceutical Investigation, 2(1), 2-11. https://doi.org/10.4103/2230-973X.96920.
Zhu, W. L., & Shin, S. Y. (2009). Effects of dimerization of the cell-penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. Journal of Peptide Science: An Official Publication of the European Peptide Society, 15(5), 345-352. https://doi.org/10.1002/psc.1120.
فهرسة مساهمة: Keywords: TAT; antibacterial peptide; cell-penetrating peptide; multimer; solid-phase peptide synthesis
المشرفين على المادة: 0 (Anti-Bacterial Agents)
0 (tat Gene Products, Human Immunodeficiency Virus)
تواريخ الأحداث: Date Created: 20200621 Date Completed: 20210817 Latest Revision: 20210817
رمز التحديث: 20231215
DOI: 10.1111/cbdd.13706
PMID: 32562357
قاعدة البيانات: MEDLINE
الوصف
تدمد:1747-0285
DOI:10.1111/cbdd.13706