دورية أكاديمية

Evidence of shock-compressed stishovite above 300 GPa.

التفاصيل البيبلوغرافية
العنوان: Evidence of shock-compressed stishovite above 300 GPa.
المؤلفون: Schoelmerich MO; European XFEL, Schenefeld, 22869, Germany. markus.schoelmerich@xfel.eu., Tschentscher T; European XFEL, Schenefeld, 22869, Germany., Bhat S; Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, 22607, Germany., Bolme CA; Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA., Cunningham E; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Farla R; Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, 22607, Germany., Galtier E; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Gleason AE; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Harmand M; Institute of Mineralogy, Materials Physics and Cosmochemistry, Sorbonne Universités, Paris, 75005, France., Inubushi Y; RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.; Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan., Katagiri K; Osaka University, Suita, Osaka, 565-0871, Japan., Miyanishi K; RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan., Nagler B; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Ozaki N; Osaka University, Suita, Osaka, 565-0871, Japan., Preston TR; European XFEL, Schenefeld, 22869, Germany., Redmer R; Universität Rostock, Institut für Physik, Rostock, 18051, Germany., Smith RF; Lawrence Livermore National Laboratory, Livermore, CA, 94500, USA., Tobase T; Center for High-Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, China., Togashi T; RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.; Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan., Tracy SJ; Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, D.C., 20015, USA., Umeda Y; Osaka University, Suita, Osaka, 565-0871, Japan., Wollenweber L; European XFEL, Schenefeld, 22869, Germany., Yabuuchi T; RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.; Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan., Zastrau U; European XFEL, Schenefeld, 22869, Germany., Appel K; European XFEL, Schenefeld, 22869, Germany.
المصدر: Scientific reports [Sci Rep] 2020 Jun 23; Vol. 10 (1), pp. 10197. Date of Electronic Publication: 2020 Jun 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مستخلص: SiO 2 is one of the most fundamental constituents in planetary bodies, being an essential building block of major mineral phases in the crust and mantle of terrestrial planets (1-10 M E ). Silica at depths greater than 300 km may be present in the form of the rutile-type, high pressure polymorph stishovite (P4 2 /mnm) and its thermodynamic stability is of great interest for understanding the seismic and dynamic structure of planetary interiors. Previous studies on stishovite via static and dynamic (shock) compression techniques are contradictory and the observed differences in the lattice-level response is still not clearly understood. Here, laser-induced shock compression experiments at the LCLS- and SACLA XFEL light-sources elucidate the high-pressure behavior of stishovite on the lattice-level under in situ conditions on the Hugoniot to pressures above 300 GPa. We find stishovite is still (meta-)stable at these conditions, and does not undergo any phase transitions. This contradicts static experiments showing structural transformations to the CaCl 2 , α-PbO 2 and pyrite-type structures. However, rate-limited kinetic hindrance may explain our observations. These results are important to our understanding into the validity of EOS data from nanosecond experiments for geophysical applications.
References: Stishov, S. & Popova, S. A new dense modification of silica. Geochemistry 923–926 – Trans. from Geokhimiya, 837–839 (1961).
Dmitriev, V., Toledano, P., Torgashev, V. & Salje, E. Theory of reconstructive phase transitions between SiO 2 polymorphs. Phys. Rev. B 58, 11911 (1998). (PMID: 10.1103/PhysRevB.58.11911)
Wicks, J. K. & Duffy, T. S. Crystal structures of minerals in the lower mantle. Deep. earth: Phys. chemistry lower mantle core 217, 69–87 (2016). (PMID: 10.1002/9781118992487.ch6)
Andrault, D., Fiquet, G., Guyot, F. & Hanfland, M. Pressure-induced Landau-type transition in stishovite. Science 282, 720–724 (1998). (PMID: 978412510.1126/science.282.5389.720)
Andrault, D., Angel, R. J., Mosenfelder, J. L. & Le Bihan, T. Equation of state of stishovite to lower mantle pressures. Am. Mineral. 88, 301–307 (2003). (PMID: 10.2138/am-2003-2-307)
Cohen, R. E. Calculation of elasticity and high pressure instabilities in corundum and stishovite with the potential induced breathing model. Geophys. Res. Lett. 14, 37–40 (1987). (PMID: 10.1029/GL014i001p00037)
Tsuchida, Y. & Yagi, T. A new, post-stishovite high pressure polymorph of silica. Nature 340, 217–220 (1989). (PMID: 10.1038/340217a0)
Kingma, K. J., Cohen, R. E., Hemley, R. J. & Mao, H.-K. Transformation of stishovite to a denser phase at lower-mantle pressures. Nature 374, 243–245 (1995). (PMID: 10.1038/374243a0)
Hemley, R. et al. Strain/order parameter coupling in the ferroelastic transition in dense SiO 2 . Solid State Commun 114, 527–532 (2000). (PMID: 10.1016/S0038-1098(00)00099-5)
Sun, N., Shi, W., Mao, Z., Zhou, C. & Prakapenka, V. B. High pressure-temperature study on the thermal equations of state of seifertite and CaCl 2 -Type SiO 2 . J. Geophys. Res. Solid Earth (2019).
Dera, P., Prewitt, C. T., Boctor, N. Z. & Hemley, R. J. Characterization of a high-pressure phase of silica from the martian meteorite shergotty. Am. Mineral. 87, 1018–1023 (2002). (PMID: 10.2138/am-2002-0728)
Murakami, M., Hirose, K., Ono, S. & Ohishi, Y. Stability of CaCl 2 -type and a-PbO 2 -type SiO 2 at high pressure and temperature determined by in-situ x-ray measurements. Geophys. Res. Lett. 30 (2003).
Dubrovinsky, L. et al. Pressure-induced transformations of cristobalite. Chem. Phys. Lett. 333, 264–270 (2001). (PMID: 10.1016/S0009-2614(00)01147-7)
Belonoshko, A. B., Dubrovinsky, L. S. & Dubrovinsky, N. A. A new high-pressure silica phase obtained by molecular dynamics. Am. Mineral. 81, 785–788 (1996). (PMID: 10.2138/am-1996-3-404)
Grocholski, B., Shim, S.-H. & Prakapenka, V. Stability, metastability, and elastic properties of a dense silica polymorph, seifertite. J. Geophys. Res. Solid Earth 118, 4745–4757 (2013). (PMID: 10.1002/jgrb.50360)
Prakapenka, V., Shen, G., Dubrovinsky, L., Rivers, M. & Sutton, S. High pressure induced phase transformation of SiO 2 and GeO 2 : difference and similarity. J. Phys. Chem. Solids 65, 1537–1545 (2004). (PMID: 10.1016/j.jpcs.2003.12.019)
Kuwayama, Y., Hirose, K., Sata, N. & Ohishi, Y. The Pyrite-Type High-Pressure Form of Silica. Science 309, 923–925 (2005). (PMID: 1608173410.1126/science.1114879)
Akins, J. A. & Ahrens, T. J. Dynamic compression of SiO 2 : A new interpretation. Geophys. Res. Lett. 29, 31–1–31–4 (2002). (PMID: 10.1029/2002GL014806)
Lyzenga, G. A. & Ahrens, T. J. Shock temperatures of SiO 2 and their geophysical implications. J. Geophys. Res. 88, 2431–2444 (1983). (PMID: 10.1029/JB088iB03p02431)
Gleason, A. et al. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO 2 . Nat. Commun. 6, 1–7 (2015).
Gleason, A. et al. Time-resolved diffraction of shock-released SiO 2 and diaplectic glass formation. Nat. Commun. 8, 1–6 (2017). (PMID: 10.1038/s41467-017-01791-y)
Tracy, S. J., Turneaure, S. J. & Duffy, T. S. In situ x-ray diffraction of shock-compressed fused silica. Phys. Rev. Lett. 120, 135702 (2018). (PMID: 2969420610.1103/PhysRevLett.120.135702)
Berryman, E. J., Winey, J. M., Gupta, Y. M. & Duffy, T. S. Sound velocities in shock-synthesized stishovite to 72 GPa. Geophys. Res. Lett. 46, 13695–13703 (2019). (PMID: 10.1029/2019GL085301)
Luo, S.-N., Mosenfelder, J. L., Asimow, P. D. & Ahrens, T. J. Direct shock wave loading of Stishovite to 235 GPa: Implications for perovskite stability relative to an oxide assemblage at lower mantle conditions. Geophys. Res. Lett. 29, 36–1–36–4 (2002). (PMID: 10.1029/2002GL015627)
Furnish, M. D., Shulenburger, L., Desjaralais, M. & Fei, Y. Recent research on stishovite: Hugoniot and partial release Z experiments and DFT EOS calculations (with nov. 17 2017 reanalysis). Tech. Rep., Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) (2017).
Millot, M. et al. Shock compression of stishovite and melting of silica at planetary interior conditions. Science 347, 418–420 (2015). (PMID: 2561388710.1126/science.1261507)
Wang, F., Tange, Y., Irifune, T. & Funakoshi, K.-I. P-V-T equation of state of stishovite up to mid-lower mantle conditions. J. Geophys. Res. Solid Earth 117 (2012).
Nishihara, Y., Nakayama, K., Takahashi, E., Iguchi, T. & Funakoshi, K.-Ì. P-V-T equation of state of stishovite to the mantle transition zone conditions. Phys. Chem. Miner. 31, 660–670 (2005). (PMID: 10.1007/s00269-004-0426-7)
Panero,W. R., Benedetti, L. R. & Jeanloz, R. Equation of state of stishovite and interpretation of SiO 2 shock-compression data. J. Geophys. Res. Solid Earth 108, ECV–5 (2003).
Ross, N. L., Shu, J. & Hazen, R. M. High-pressure crystal chemistry of stishovite. Am. Mineral. 75, 739–747 (1990).
Angel, R. Eos-fit v6. 0. Comput. program. Crystallogr. Lab. Dep. Geol. Sci. Virginia Tech, Blacksbg. (2001).
Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. Solid Earth 83, 1257–1268 (1978). (PMID: 10.1029/JB083iB03p01257)
Watanabe, H. et al. Thermochemical properties of synthetic high-pressure compounds relevant to the Earth’s mantle. High-pressure Res. Geophys. 441–464 (1982).
Buchen, J. et al. Equation of state of polycrystalline stishovite across the tetragonal-orthorhombic phase transition. J. Geophys. Res. Solid Earth 123, 7347–7360 (2018). (PMID: 10.1029/2018JB015835)
Lee, C. & Gonze, X. SiO 2 stishovite under high pressure: Dielectric and dynamical properties and the ferroelastic phase transition. Phys. Rev. B 56, 7321 (1997). (PMID: 10.1103/PhysRevB.56.7321)
Černok, A. et al. Compressional pathways of α-cristobalite, structure of cristobalite XI, and towards the understanding of seifertite formation. Nat. Commun. 8, 1–10 (2017). (PMID: 10.1038/ncomms15647)
Donadio, D., Martoňák, R., Raiteri, P. & Parrinello, M. Influence of temperature and anisotropic pressure on the phase transitions in a-cristobalite. Phys. Rev. Lett. 100, 165502 (2008). (PMID: 1851821410.1103/PhysRevLett.100.165502)
Kaercher, P. M. et al. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms. Phys. Chem. Miner. 42, 275–285 (2015). (PMID: 10.1007/s00269-014-0718-5)
Luo, S.-N., Ahrens, T. J. & Asimow, P. D. Polymorphism, superheating, and amorphization of silica upon shock wave loading and release. J. Geophys. Res. Solid Earth 108 (2003).
Simha, N. & Truskinovsky, L. Shear induced transformation toughening in ceramics. Acta Met. Mater. 42, 3827–3836 (1994). (PMID: 10.1016/0956-7151(94)90448-0)
Smith, R. et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth. Phys. Rev. Lett. 101, 065701 (2008). (PMID: 1876447710.1103/PhysRevLett.101.065701)
Smith, R. et al. Time-dependence of the alpha to epsilon phase transformation in iron. J. Appl. Phys. 114, 223507 (2013). (PMID: 10.1063/1.4839655)
Rapp, L. et al. Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion. Nat. Commun. 6, 1–10 (2015). (PMID: 10.1038/ncomms8555)
Gorman, M. et al. Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth. Sci. Rep. 8, 1–8 (2018). (PMID: 10.1038/s41598-018-35260-3)
Coleman, A. et al. Identification of phase transitions and metastability in dynamically compressed antimony using ultra-fast x-ray diffraction. Phys. Rev. Lett. 122, 255704 (2019). (PMID: 3134788310.1103/PhysRevLett.122.255704)
Pépin, C. M. et al. Kinetics and structural changes in dynamically compressed bismuth. Phys. Rev. B 100, 060101 (2019). (PMID: 10.1103/PhysRevB.100.060101)
Duffy, T., Madhusudhan, N. & Lee, K. Mineralogy of Super-Earth Planets. Treatise on Geophys. 2, 149–178 (2015).
Nagler, B. et al. The matter in extreme conditions instrument at the Linac coherent light source. J. Synchrotron Radiat. 22, 520–525 (2015). (PMID: 25931063441667010.1107/S1600577515004865)
Inubushi, Y. et al. Development of an experimental platform for combinative use of an XFEL and a high-power nanosecond laser. Appl. Sci. 10(7), 2224 (2020).
Kerley, G. Equations of state for composite materials. Rep. KPS99 4 (1999).
Andrault, D. et al. Melting behavior of SiO 2 up to 120 GPa. Phys. Chem. Miner. 47, 10 (2020). (PMID: 10.1007/s00269-019-01077-3)
Usui, Y. & Tsuchiya, T. Ab initio two-phase molecular dynamics on the melting curve of SiO 2 . J. Earth Sci. 21, 801–810 (2010). (PMID: 10.1007/s12583-010-0126-9)
Belonoshko, A. B. & Dubrovinsky, L. S. Molecular dynamics of stishovite melting. Geochim. Cosmochim. Acta 59, 1883–1889 (1995). (PMID: 10.1016/0016-7037(95)00071-7)
Luo, S.-N., Çain, T., Strachan, A., Goddard, W. A. III. & Ahrens, T. J. Molecular dynamics modeling of stishovite. Earth Planet. Sci. Lett. 202, 147–157 (2002). (PMID: 10.1016/S0012-821X(02)00749-5)
Shen, G. & Lazor, P. Measurement of melting temperatures of some minerals under lower mantle pressures. J. Geophys. Res. Solid Earth 100, 17699–17713 (1995). (PMID: 10.1029/95JB01864)
Zhang, J., Liebermann, R. C., Gasparik, T., Herzberg, C. T. & Fei, Y. Melting and subsolidus relations of SiO 2 at 9–14 GPa. J. Geophys. Res. Solid Earth 98, 19785–19793 (1993). (PMID: 10.1029/93JB02218)
تواريخ الأحداث: Date Created: 20200625 Latest Revision: 20210623
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7311448
DOI: 10.1038/s41598-020-66340-y
PMID: 32576908
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-020-66340-y