دورية أكاديمية

Rapid activation of distinct members of multigene families in Plasmodium spp.

التفاصيل البيبلوغرافية
العنوان: Rapid activation of distinct members of multigene families in Plasmodium spp.
المؤلفون: Omelianczyk RI; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore., Loh HP; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore., Chew M; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.; Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, Singapore, Singapore., Hoo R; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore., Baumgarten S; Biology of Host-Parasite Interactions Unit, Department of Parasites and Insect Vectors, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, Paris, France., Renia L; Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore, Singapore., Chen J; Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, Singapore, Singapore.; Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA., Preiser PR; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. prpreiser@ntu.edu.sg.; Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, Singapore, Singapore. prpreiser@ntu.edu.sg.
المصدر: Communications biology [Commun Biol] 2020 Jul 03; Vol. 3 (1), pp. 351. Date of Electronic Publication: 2020 Jul 03.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group UK Country of Publication: England NLM ID: 101719179 Publication Model: Electronic Cited Medium: Internet ISSN: 2399-3642 (Electronic) Linking ISSN: 23993642 NLM ISO Abbreviation: Commun Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, United Kingdom : Nature Publishing Group UK, [2018]-
مواضيع طبية MeSH: Gene Expression Regulation* , Multigene Family*, Erythrocytes/*metabolism , Malaria, Falciparum/*genetics , Plasmodium falciparum/*genetics , Protozoan Proteins/*metabolism, Animals ; Erythrocytes/parasitology ; Humans ; Malaria, Falciparum/parasitology ; Mice ; Protozoan Proteins/genetics
مستخلص: The genomes of Plasmodium spp. encode a number of different multigene families that are thought to play a critical role for survival. However, with the exception of the P. falciparum var genes, very little is known about the biological roles of any of the other multigene families. Using the recently developed Selection Linked Integration method, we have been able to activate the expression of a single member of a multigene family of our choice in Plasmodium spp. from its endogenous promoter. We demonstrate the usefulness of this approach by activating the expression of a unique var, rifin and stevor in P. falciparum as well as yir in P. yoelii. Characterization of the selected parasites reveals differences between the different families in terms of mutual exclusive control, co-regulation, and host adaptation. Our results further support the application of the approach for the study of multigene families in Plasmodium and other organisms.
References: Spillman, N. J., Beck, J. R. & Goldberg, D. E. Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annu. Rev. Biochem. 84, 813–841 (2015). (PMID: 2562151010.1146/annurev-biochem-060614-03415725621510)
Boddey, J. A. & Cowman, A. F. Plasmodium nesting: remaking the erythrocyte from the inside out. Annu. Rev. Microbiol. 67, 243–269 (2013). (PMID: 2380834110.1146/annurev-micro-092412-15573023808341)
Przyborski, J. M., Nyboer, B. & Lanzer, M. Ticket to ride: export of proteins to the Plasmodium falciparum-infected erythrocyte. Mol. Microbiol. 101, 1–11 (2016). (PMID: 2699612310.1111/mmi.1338026996123)
Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium-falciparum-infected erythrocytes. Cell 82, 89–100 (1995). (PMID: 760678810.1016/0092-8674(95)90055-17606788)
Janssen, C. S. et al. Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. Nucleic Acids Res. 32, 5712–5720 (2004). (PMID: 1550768552879210.1093/nar/gkh907)
Howard, R. J. et al. Two approximately 300-kilodalton Plasmodium-falciparum proteins at the surface-membrane of infected erythrocytes. Mol. Biochem. Parasitol. 27, 207–224. (1988). (PMID: 327822710.1016/0166-6851(88)90040-03278227)
Carlton, J. M. et al. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419, 512–519 (2002). (PMID: 1236886510.1038/nature0109912368865)
Carlton, J. M. et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455, 757–763 (2008). (PMID: 18843361265115810.1038/nature07327)
Pain, A. et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature 455, 799–803 (2008). (PMID: 18843368265693410.1038/nature07306)
Cheng, Q. et al. Stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Mol. Biochem. Parasitol. 97, 161–176 (1998). (PMID: 987989510.1016/S0166-6851(98)00144-3)
Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002). (PMID: 123688641236886410.1038/nature01097)
Lemieux, J. E. et al. Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation. Mol. Microbiol. 90, 519–537 (2013). (PMID: 23980881389495910.1111/mmi.12381)
Flueck, C. et al. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog. 5, e1000569 (2009).
Freitas-Junior, L. H. et al. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P-falciparum. Nature 407, 1018–1022 (2000). (PMID: 1106918310.1038/35039531)
Claessens, A. et al. Generation of antigenic diversity in plasmodium falciparum by structured rearrangement of var genes during mitosis. PLoS Genet. 10, e1004812 (2014).
Sander, A. F. et al. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families. Nucleic Acids Res. 42, 2270–2281 (2014). (PMID: 2425330610.1093/nar/gkt1174)
Navarro, M. & Gull, K. A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 414, 759–763 (2001). (PMID: 1174240210.1038/414759a)
Stoenner, H. G., Dodd, T. & Larsen, C. Antigenic variation of Borrelia-hermsii. J. Exp. Med. 156, 1297–1311 (1982). (PMID: 713090010.1084/jem.156.5.1297)
Rine, J. et al. A suppressor of mating-type locus mutations in Saccharomyces-cerevisiae—evidence for and identification of cryptic mating-type loci. Genetics 93, 877–901 (1979). (PMID: 3979131214119)
Chen, Q. J. et al. Developmental selection of var gene expression in Plasmodium falciparum. Nature 394, 392–395 (1998). (PMID: 969047710.1038/28660)
Joergensen, L. et al. surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1. PLoS Pathog. 6, e1001083 (2010).
Perez-Toledo, K. et al. Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes. Nucleic Acids Res. 37, 2596–2606 (2009). (PMID: 19270070267787310.1093/nar/gkp115)
Amulic, B. et al. An upstream open reading frame controls translation of var2csa, a gene implicated in placental malaria. PLoS Pathog. 5, e1000256 (2009).
Brancucci, N. M. B. et al. A var gene upstream element controls protein synthesis at the level of translation initiation in Plasmodium falciparum. PLoS ONE 9, e100183 (2014).
Voss, T. S. et al. A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 439, 1004–1008 (2006). (PMID: 1638223710.1038/nature04407)
Brancucci, N. M. B. et al. Identification of a cis-acting DNA-protein interaction implicated in singular var gene choice in Plasmodium falciparum. Cell. Microbiol. 14, 1836–1848 (2012). (PMID: 22891919354948110.1111/cmi.12004)
Lopez-Rubio, J. J. et al. 5 ‘ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol. Microbiol. 66, 1296–1305 (2007). (PMID: 180283132228885)
Chookajorn, T. et al. Epigenetic memory at malaria virulence genes. Proc. Natl Acad. Sci. USA 104, 899–902 (2007). (PMID: 1720901110.1073/pnas.0609084103)
Duraisingh, M. T. et al. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium faiciparum. Cell 121, 13–24 (2005). (PMID: 1582067510.1016/j.cell.2005.01.036)
Ralph, S. A., Scheidig-Benatar, C. & Scherf, A. Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. Proc. Natl Acad. Sci. USA 102, 5414–5419 (2005). (PMID: 1579799010.1073/pnas.0408883102)
Araujo, R. B. D. et al. Independent regulation of Plasmodium falciparum rif gene promoters. Sci. Rep. 8, 9332 (2018).
Wang, C. W. et al. Preferential transcription of conserved rif genes in two phenotypically distinct Plasmodium falciparum parasite lines. Int. J. Parasitol. 39, 655–664 (2009). (PMID: 1916203110.1016/j.ijpara.2008.11.014)
Cabral, F. J. & Wunderlich, G. Transcriptional memory and switching in the Plasmodium falciparum rif gene family. Mol. Biochemical Parasitol. 168, 186–190 (2009). (PMID: 10.1016/j.molbiopara.2009.08.002)
Petter, M., Bonow, I. & Klinkert, M. Q. Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis. PLoS ONE 3, e3779 (2008).
Goel, S. et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat. Med. 21, 314–31 (2015). (PMID: 2575181610.1038/nm.3812)
Lopez-Rubio, J. J., Mancio-Silva, L. & Scherf, A. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5, 179–190 (2009). (PMID: 1921808810.1016/j.chom.2008.12.012)
Salcedo-Amaya, A. M. et al. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 106, 9655–9660 (2009). (PMID: 1949787410.1073/pnas.0902515106)
Howitt, C. A. et al. Clonally variant gene families in Plasmodium falciparum share a common activation factor. Mol. Microbiol. 73, 1171–1185 (2009). (PMID: 19708920275264410.1111/j.1365-2958.2009.06846.x)
Lavazec, C., Sanyal, S. & Templeton, T. J. Expression switching in the stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Mol. Microbiol. 64, 1621–1634 (2007). (PMID: 1755544210.1111/j.1365-2958.2007.05767.x)
Niang, M., Yam, X. Y. & Preiser, P. R. The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte. PLoS Pathog. 5, e1000307 (2009).
Sharp, S. et al. Programmed transcription of the var gene family, but not of stevor, in Plasmodium falciparum gametocytes. Eukaryot. Cell 5, 1206–1214 (2006). (PMID: 16896206153913810.1128/EC.00029-06)
Reeder, J. C. & Brown, G. V. Antigenic variation and immune evasion in Plasmodium falciparum malaria. Immunol. Cell Biol. 74, 546–554 (1996). (PMID: 898959310.1038/icb.1996.88)
Biggs, B. A. et al. Antigenic variation in Plasmodium-falciparum. Proc. Natl Acad. Sci. USA 88, 9171–9174 (1991). (PMID: 192438010.1073/pnas.88.20.9171)
Rowe, J. A. et al. P-falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 388, 292–295 (1997). (PMID: 923044010.1038/40888)
Fried, M. & Duffy, P. E. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272, 1502–1504 (1996). (PMID: 863324710.1126/science.272.5267.1502)
Baruch, D. I. et al. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proc. Natl Acad. Sci. USA 93, 3497–3502 (1996). (PMID: 862296510.1073/pnas.93.8.34978622965)
Niang, M. et al. STEVOR Is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 16, 81–93 (2014). (PMID: 25011110438220510.1016/j.chom.2014.06.004)
Saito, F. et al. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors. Nature 552, 101–10 (2017). (PMID: 29186116574889310.1038/nature24994)
Bernabeu, M. et al. Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor. Cell. Microbiol. 14, 386–400 (2012). (PMID: 2210340210.1111/j.1462-5822.2011.01726.x22103402)
Yam, X. Y. et al. Characterization of the Plasmodium interspersed repeats (PIR) proteins of Plasmodium chabaudi indicates functional diversity. Sci. Rep. 6, 23449 (2016). (PMID: 26996203480044310.1038/srep23449)
Horrocks, P. et al. Variable var transition rates underlie antigenic variation in malaria. Proc. Natl Acad. Sci. USA 101, 11129–11134 (2004). (PMID: 1525659710.1073/pnas.0402347101)
Blythe, J. E. et al. Plasmodium falciparum STEVOR proteins are highly expressed in patient isolates and located in the surface membranes of infected red blood cells and the apical tips of merozoites. Infect. Immun. 76, 3329–3336 (2008). (PMID: 18474651244671810.1128/IAI.01460-07)
Scherf, A. et al. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 17, 5418–5426 (1998). (PMID: 9736619117086710.1093/emboj/17.18.5418)
Schieck, E. et al. Nuclear run-on analysis of var gene expression in Plasmodium falciparum. Mol. Biochem. Parasitol. 153, 207–212 (2007). (PMID: 1738374410.1016/j.molbiopara.2007.02.004)
Dzikowski, R., Frank, M. & Deitsch, K. Mutually exclusive expression of virulence genes by malaria parasites is regulated independently of antigen production. PLoS Pathog. 2, 184–194. (2006). (PMID: 10.1371/journal.ppat.0020022)
Cunningham, D. et al. Rapid changes in transcription profiles of the Plasmodium yoelii yir multigene family in clonal populations: lack of epigenetic memory?. PLoS ONE 4, e4285 (2009). (PMID: 19173007262873810.1371/journal.pone.0004285)
Frank, M. et al. Variable switching rates of malaria virulence genes are associated with chromosomal position. Mol. Microbiol. 64, 1486–1498 (2007). (PMID: 17555435363412010.1111/j.1365-2958.2007.05736.x)
Smalley, M. E. & Butcher, G. A. The in vitro culture of the blood stages of Plasmodium berghei. Int. J. Parasitol. 5, 131–132 (1975). (PMID: 109055010.1016/0020-7519(75)90018-1)
Lewis-Hughes, P. H. & Howell, M. J. In vitro culture of Plasmodium yoelii blood stages. Int. J. Parasitol. 14, 447–451 (1984). (PMID: 651117310.1016/0020-7519(84)90024-9)
Sohal, A. K. & Arnot, D. E. Plasmodium chabaudi: a short-term in vitro culture method and its application to chloroquine resistance testing. Exp. Parasitol. 76, 314–317 (1993). (PMID: 850059010.1006/expr.1993.1038)
Noulin, F. et al. 1912–2012: a century of research on Plasmodium vivax in vitro culture. Trends Parasitol. 29, 286–294 (2013). (PMID: 2362375910.1016/j.pt.2013.03.012)
Birnbaum, J. et al. A genetic system to study Plasmodium falciparum protein function. Nat. Methods 14, 450–456 (2017). (PMID: 2828812110.1038/nmeth.4223)
Knapp, B., Hundt, E. & Kupper, H. A. Plasmodium-falciparum Aldolase—gene structure and localization. Mol. Biochemical Parasitol. 40, 1–12 (1990). (PMID: 10.1016/0166-6851(90)90074-V)
Johnson, D. et al. Characterization of membrane-proteins exported from Plasmodium-falciparum into the host erythrocyte. Parasitology 109, 1–9 (1994). (PMID: 805835910.1017/S0031182000077696)
Dietz, O. et al. Characterization of the small exported plasmodium falciparum membrane protein SEMP1. PLoS ONE 9, e103272 (2014).
Baum, J. et al. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J. Biol. Chem. 281, 5197–5208 (2006). (PMID: 1632197610.1074/jbc.M509807200)
Przyborski, J. M. et al. Trafficking of STEVOR to the Maurer’s clefts in Plasmodium falciparum-infected erythrocytes. EMBO J. 24, 2306–2317 (2005). (PMID: 15961998117316010.1038/sj.emboj.7600720)
Petter, M. et al. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns. Mol. Biochem. Parasitol. 156, 51–61 (2007). (PMID: 1771965810.1016/j.molbiopara.2007.07.011)
Siau, A. et al. Identification of a new export signal in Plasmodium yoelii: identification of a new exportome. Cell Microbiol 16, 673–686 (2014). (PMID: 2463663710.1111/cmi.12293)
Witmer, K. et al. Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling. Mol. Microbiol. 84, 243–259 (2012). (PMID: 22435676349168910.1111/j.1365-2958.2012.08019.x)
Ubhe, S. et al. Genome-wide identification of novel intergenic enhancer-like elements: implications in the regulation of transcription in Plasmodium falciparum. BMC Genomics 18, 656 (2017). (PMID: 28836940556947710.1186/s12864-017-4052-4)
Guizetti, J., Barcons-Simon, A. & Scherf, A. Trans-acting GC-rich non-coding RNA at var expression site modulates gene counting in malaria parasite. Nucleic Acids Res. 44, 9710–9718 (2016). (PMID: 274663915175341)
Amit-Avraham, I. et al. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum. Proc. Natl Acad. Sci. USA 112, E982–E991 (2015). (PMID: 2569174310.1073/pnas.1420855112)
Abdi, A. et al. Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome. Wellcome Open Res. 2, 50 (2017). (PMID: 28944300558374510.12688/wellcomeopenres.11910.1)
Ye, W. J. et al. Microvesicles from malaria-infected red blood cells activate natural killer cells via MDA5 pathway. PLoS Pathog. 14, e1007298 (2018).
Ponts, N. et al. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum. Cell Host Microbe 14, 696–706 (2013). (PMID: 24331467393152910.1016/j.chom.2013.11.007)
Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, 85–100. (2003). (PMID: 10.1371/journal.pbio.0000005)
Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002). (PMID: 1236886610.1038/nature01107)
Dzikowski, R. et al. Mechanisms underlying mutually exclusive expression of virulence genes by malaria parasites. EMBO Rep. 8, 959–965 (2007). (PMID: 17762879200255210.1038/sj.embor.7401063)
Deitsch, K. W., Calderwood, M. S. & Wellems, T. E. Malaria. Cooperative silencing elements in var genes. Nature 412, 875–876 (2001). (PMID: 1152846810.1038/35091146)
Kim, T. K., Hemberg, M. & Gray, J. M. Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers. Cold Spring Harb. Perspect. Biol. 7, a018622 (2015). (PMID: 25561718429216110.1101/cshperspect.a018622)
Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193, 673–675 (1976). (PMID: 78184010.1126/science.781840)
Fidock, D. A. & Wellems, T. E. Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proc. Natl Acad. Sci. USA 94, 10931–10936 (1997). (PMID: 938073710.1073/pnas.94.20.10931)
Bozdech, Z. et al. Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol. 4, R9 (2003). (PMID: 1262011915130810.1186/gb-2003-4-2-r9)
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 246954042469540410.1093/bioinformatics/btu170)
Golnitz, U., Albrecht, L. & Wunderlich, G. Var transcription profiling of Plasmodium falciparum 3D7: assignment of cytoadherent phenotypes to dominant transcripts. Malar. J. 7, 14 (2008). (PMID: 18194571225442410.1186/1475-2875-7-14)
Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002). (PMID: 117522959912210.1093/nar/30.1.207)
المشرفين على المادة: 0 (Protozoan Proteins)
تواريخ الأحداث: Date Created: 20200705 Date Completed: 20210615 Latest Revision: 20210703
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7334209
DOI: 10.1038/s42003-020-1081-3
PMID: 32620892
قاعدة البيانات: MEDLINE
الوصف
تدمد:2399-3642
DOI:10.1038/s42003-020-1081-3