دورية أكاديمية

Sex-specific alterations in GABA receptor-mediated responses in laterodorsal tegmentum are associated with prenatal exposure to nicotine.

التفاصيل البيبلوغرافية
العنوان: Sex-specific alterations in GABA receptor-mediated responses in laterodorsal tegmentum are associated with prenatal exposure to nicotine.
المؤلفون: Eliasen JN; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark., Krall J; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark., Frølund B; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark., Kohlmeier KA; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
المصدر: Developmental neurobiology [Dev Neurobiol] 2020 May; Vol. 80 (5-6), pp. 178-199. Date of Electronic Publication: 2020 Aug 04.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Subscription Services, Inc Country of Publication: United States NLM ID: 101300215 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1932-846X (Electronic) Linking ISSN: 19328451 NLM ISO Abbreviation: Dev Neurobiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : Wiley Subscription Services, Inc.
مواضيع طبية MeSH: Nicotine/*pharmacology , Nicotinic Agonists/*pharmacology , Pontine Tegmentum/*metabolism , Prenatal Exposure Delayed Effects/*metabolism , Receptors, GABA-A/*metabolism , Receptors, GABA-B/*metabolism , Smoking/*adverse effects, Age Factors ; Animals ; Calcium/metabolism ; Disease Models, Animal ; Female ; Male ; Mice ; Pontine Tegmentum/drug effects ; Pregnancy ; Prenatal Exposure Delayed Effects/etiology ; Receptors, GABA-A/drug effects ; Receptors, GABA-B/drug effects ; Sex Factors
مستخلص: Smoking during pregnancy is associated with deleterious physiological and cognitive effects on the offspring, which are likely due to nicotine-induced alteration in the development of neurotransmitter systems. Prenatal nicotine exposure (PNE) in rodents is associated with changes in behaviors controlled in part by the pontine laterodorsal tegmentum (LDT), and LDT excitatory signaling is altered in a sex and age-dependent manner by PNE. As effects on GABAergic LDT signaling are unknown, we used calcium imaging to evaluate GABA A receptor- (GABA A R as well as GABA A - ρ R) and GABA B receptor (GABA B R)-mediated calcium responses in LDT brain slices from female and male PNE mice in two different age groups. Overall, in older PNE females, changes in calcium induced by stimulation of GABA A R and GABA B R, including GABA A - ρ R were shifted toward calcium rises. In both young and old males, PNE was associated with alterations in calcium mediated by all three receptors; however, the GABA A R was the most affected. These results show for the first time that PNE is associated with alterations in GABAergic transmission in the LDT in a sex- and age-dependent manner, and these data are the first to show PNE-associated alterations in functionality of GABA receptors in any nucleus. PNE-associated alterations in LDT GABAergic transmission within the LDT would be expected to alter output to target regions and could play a role in LDT-implicated, negative behavioral outcomes following gestational exposure to smoking. Accordingly, our data provide further supportive evidence of the importance of eliminating the consumption of nicotine during pregnancy.
(© 2020 Wiley Periodicals LLC.)
References: Aliyu, M. H., Salihu, H. M., Wilson, R. E., & Kirby, R. S. (2007). Prenatal smoking and risk of intrapartum stillbirth. Archives of Environmental & Occupational Health, 62(2), 87-92. https://doi.org/10.3200/aeoh.62.2.87-92.
Alkam, T., Kim, H.-C., Hiramatsu, M., Mamiya, T., Aoyama, Y., Nitta, A., … Nabeshima, T. (2013). Evaluation of emotional behaviors in young offspring of C57BL/6J mice after gestational and/or perinatal exposure to nicotine in six different time-windows. Behavioral Brain Research, 239, 80-89. https://doi.org/10.1016/j.bbr.2012.10.058.
Alkam, T., Kim, H. C., Mamiya, T., Yamada, K., Hiramatsu, M., & Nabeshima, T. (2013). Evaluation of cognitive behaviors in young offspring of C57BL/6J mice after gestational nicotine exposure during different time-windows. Psychopharmacology, 230(3), 451-463. https://doi.org/10.1007/s00213-013-3175-9.
Alkam, T., Mamiya, T., Kimura, N., Yoshida, A., Kihara, D., Tsunoda, Y., … Nabeshima, T. (2017). Prenatal nicotine exposure decreases the release of dopamine in the medial frontal cortex and induces atomoxetine-responsive neurobehavioral deficits in mice. Psychopharmacology, 234(12), 1853-1869. https://doi.org/10.1007/s00213-017-4591-z.
Arnaud, C., Gauthier, P., & Gottesmann, C. (2001). Study of a GABAC receptor antagonist on sleep-waking behavior in rats. Psychopharmacology, 154(4), 415-419. https://doi.org/10.1007/s002130000653.
Ben-Ari, Y., Gaiarsa, J.-L., Tyzio, R., & Khazipov, R. (2007). GABA: A pioneer transmitter that excites immature neurons and generates primative oscillations. Physiological Reviews, 87(4), 1215-1284.
Blood-Siegfried, J., & Rende, E. K. (2010). The long-term effects of prenatal nicotine exposure on neurologic development. Journal of Midwifery & Women's Health, 55(2), 143-152. https://doi.org/10.1016/j.jmwh.2009.05.006.
Boue-Grabot, E., Roudbaraki, M., Bascles, L., Tramu, G., Bloch, B., & Garret, M. (1998). Expression of GABA receptor rho subunits in rat brain. Journal of Neurochemistry, 70(3), 899-907. https://doi.org/10.1046/j.1471-4159.1998.70030899.x.
Brann, D. W., Dhandapani, K., Wakade, C., Mahesh, V. B., & Khan, M. M. (2007). Neurotrophic and neuroprotective actions of estrogen: Basic mechanisms and clinical implications. Steroids, 72(5), 381-405. https://doi.org/10.1016/j.steroids.2007.02.003.
Braun, A. R., Balkin, T. J., Wesenten, N. J., Carson, R. E., Varga, M., Baldwin, P., … Herscovitch, P. (1997). Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain, 120(7), 1173-1197. https://doi.org/10.1093/brain/120.7.1173.
Brennan, P. A., Grekin, E. R., Mortensen, E. L., & Mednick, S. A. (2002). Relationship of maternal smoking during pregnancy with criminal arrest and hospitalization for substance abuse in male and female adult offspring. American Journal of Psychiatry, 159, 48-54. https://doi.org/10.1176/appi.ajp.159.1.48.
Brodnik, Z. D., Batra, A., Oleson, E. B., & Espana, R. A. (2019). Local GABAA receptor-mediated suppression of dopamine release within the nucleus accumbens. American Chemical Society, 10(4), 1978-1985. https://doi.org/10.1021/acschemneuro.8b00268.
Caligioni, C. S. (2009). Assessing reproductive status/stages in mice. Current Protocols in Neuroscience, 48(1), A-4I. https://doi.org/10.1002/0471142301.nsa04is48.
Christensen, M. H., Nielsen, M. L., & Kohlmeier, K. A. (2015). Electrophysiological changes in laterodorsal tegmental neurons associated with prenatal nicotine exposure: Implications for heightened susceptibility to addict to drugs of abuse. Journal of Developmental Origins of Health and Disease, 6(3), 182-200. https://doi.org/10.1017/s204017441400049x.
Connolly, C. N., & Wafford, K. A. (2004). The Cys-loop superfamily of ligand-gated ion channels: The impact of receptor structure on function. Biochemical Society Transactions, 32(Pt3), 529-534. https://doi.org/10.1042/bst0320529.
Connor, J. A., & Cormier, R. J. (2000). Cumulative effects of glutamate microstimulation on Ca(2+) responses of CA1 hippocampal pyramidal neurons in slice. Journal of Neurophysiology, 83(1), 90-98. https://doi.org/10.1152/jn.2000.83.1.90.
Cornelius, M. D., & Day, N. L. (2009). Developmental consequences of prenatal tobacco exposure. Current Opinion in Neurology, 22(2), 121-125. https://doi.org/10.1097/WCO.0b013e328326f6dc.
Cornelius, M. D., Ryan, C. M., Day, N. L., Goldschmidt, L., & Willford, J. A. (2001). Prenatal tobacco effects on neuropsychological outcomes among preadolescents. Journal of Developmental and Behavioral Pediatrics, 22(4), 217-225. https://doi.org/10.1097/00004703-200108000-00002.
Dautan, D., Souza, A. S., Huerta-Ocampo, I., Valencia, M., Assous, M., Witten, I. B., … Mena-Segovia, J. (2016). Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nature Neuroscience, 19(8), 1025-1033. https://doi.org/10.1038/nn.4335.
Dwyer, J. B., McQuown, S. C., & Leslie, F. M. (2009). The dynamic effects of nicotine on the developing brain. Pharmacology & Therapeutics, 122(2), 125-139. https://doi.org/10.1016/j.pharmthera.2009.02.003.
Enz, R., Brandstätter, J. H., Hartveit, E., Wässle, H., & Bormann, J. (1995). Expression of GABA receptor ρ1 and ρ2 subunits in the retina and brain of the rat. European Journal of Neuroscience, 7(7), 1495-1501. https://doi.org/10.1111/j.1460-9568.1995.tb01144.x.
Enz, R., Brandstätter, J. H., Wässle, H., & Bormann, J. (1996). Immunocytochemical localization of the GABACReceptor ρ subunits in the mammalian retina. The Journal of Neuroscience, 16(14), 4479-4490. https://doi.org/10.1523/jneurosci.16-14-04479.1996.
Everitt, B. J. (2003). The GABAB receptor agonist baclofen attenuates cocaine- and heroin-seeking behavior by rats. Neuropsychopharmacology, 28(3), 510-518. https://doi.org/10.1038/sj.npp.1300088.
Frank, M. G., Srere, H., Ledezma, C., O'Hara, B., & Heller, H. C. (2001). Prenatal nicotine alters vigilance states and AchR gene expression in the neonatal rat: Implications for SIDS. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 280(4), R1134-R1140. https://doi.org/10.1152/ajpregu.2001.280.4.R1134.
Franke, R. M., Park, M., Belluzzi, J. D., & Leslie, F. M. (2008). Prenatal nicotine exposure changes natural and drug-induced reinforcement in adolescent male rats. European Journal of Neuroscience, 27(11), 2952-2961. https://doi.org/10.1111/j.1460-9568.2008.06253.x.
Frazao, R., Nogueira, M. I., & Wassle, H. (2007). Colocalization of synaptic GABA(C)-receptors with GABA (A)-receptors and glycine-receptors in the rodent central nervous system. Cell and Tissue Research, 330(1), 1-15. https://doi.org/10.1007/s00441-007-0446-y.
Galeffi, F., Sah, R., Pond, B. B., George, A., & Schwartz-Bloom, R. D. (2004). Changes in intracellular chloride after oxygen-glucose deprivation of the adult hippocampal slice: Effect of diazepam. Journal of Neuroscience, 24(18), 4478-4488. https://doi.org/10.1523/jneurosci.0755-04.2004.
Gonzales, R. A., Job, M. O., & Doyon, W. M. (2004). The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacology & Therapeutics, 103(2), 121-146. https://doi.org/10.1016/j.pharmthera.2004.06.002.
Gorodeski, G. I., Sheean, L. A., & Utian, W. H. (1995). Sex hormone modulation of flow velocity in the parametrial artery of the pregnant rat. American Journal of Physiology, 268(3), R614-R624. https://doi.org/10.1152/ajpregu.1995.268.3.R614.
He, X., Lu, J., Dong, W., Jiao, Z., Zhang, C., Yu, Y., … Xu, D. (2017). Prenatal nicotine exposure induces HPA axis-hypersensitivity in offspring rats via the intrauterine programming of up-regulation of hippocampal GAD67. Archives of Toxicology, 91(12), 3927-3943. https://doi.org/10.1007/s00204-017-1996-8.
Ipsen, T. H., Polli, F. S., & Kohlmeier, K. A. (2018). Calcium rises induced by AMPA and nicotine receptors in the ventral tegmental area show differences in mouse brain slices prenatally exposed to nicotine. Developmental Neurobiology, 78(8), 828-848. https://doi.org/10.1002/dneu.22607.
Jacobsen, L. K., Slotkin, T. A., Mencl, W. E., Frost, S. J., & Pugh, K. R. (2007). Gender-specific effects of prenatal and adolescent exposure to tobacco smoke on auditory and visual attention. Neuropsychopharmacology, 32, 2453-2464. https://doi.org/10.1038/sj.npp.1301398.
Kantrowitz, J., Citrome, L., & Javitt, D. (2009). GABA(B) receptors, schizophrenia and sleep dysfunction: A review of the relationship and its potential clinical and therapeutic implications. CNS Drugs, 23(8), 681-691. https://doi.org/10.2165/00023210-200923080-00005.
Ko, T. J., Tsai, L. Y., Chu, L. C., Yeh, S. J., Leung, C., Chen, C. Y., … Hsieh, W. S. (2014). Parental smoking during pregnancy and its association with low birth weight, small for gestational age, and preterm birth offspring: A birth cohort study. Pediatrics & Neonatology, 55(1), 20-27. https://doi.org/10.1016/j.pedneo.2013.05.005.
Kohlmeier, K. A. (2013). Off the beaten path: Drug addiction and the pontine laterodorsal tegmentum. ISRN Neuroscience, 2013, 604847. https://doi.org/10.1155/2013/604847.
Kohlmeier, K. A. (2015). Nicotine during pregnancy: Changes induced in neurotransmission, which could heighten proclivity to addict and induce maladaptive control of attention. Journal of Developmental Origins of Health and Disease, 6(3), 169-181. https://doi.org/10.1017/S2040174414000531.
Kohlmeier, K. A., Inoue, T., & Leonard, C. S. (2004). Hypocretin/orexin peptide signaling in the ascending arousal system: Elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum. Journal of Neurophysiology, 92(1), 221-235. https://doi.org/10.1152/jn.00076.2004.
Kohlmeier, K. A., & Kristiansen, U. (2010). GABAergic actions on cholinergic laterodorsal tegmental neurons: Implications for control of behavioral state. Neuroscience, 171(3), 812-829. https://doi.org/10.1016/j.neuroscience.2010.09.034.
Kohlmeier, K. A., Vardar, B., & Christensen, M. H. (2013). gamma-Hydroxybutyric acid induces actions via the GABAB receptor in arousal and motor control-related nuclei: Implications for therapeutic actions in behavioral state disorders. Neuroscience, 248, 261-277. https://doi.org/10.1016/j.neuroscience.2013.06.011.
Kusama, T., Spivak, C. E., Whiting, P., Dawson, V. L., Schaeffer, J. C., & Uhl, G. R. (1993). Pharmacology of GAB A ρ1 and GAB A α/β receptors expressed in Xenopus oocytes and COS cells. British Journal of Pharmacology, 109(1), 200-206. https://doi.org/10.1111/j.1476-5381.1993.tb13554.x.
Kyrklund-Blomberg, N. B., Granath, F., & Cnattingius, S. (2005). Maternal smoking and causes of very preterm birth. Acta Obstetricia et Gynecologica Scandinavica, 84(6), 572-577. https://doi.org/10.1111/j.0001-6349.2005.00848.x.
Lacy, R. T., Morgan, A. J., & Harrod, S. B. (2014). IV prenatal nicotine exposure increases the reinforcing efficacy of methamphetamine in adult rat offspring. Drug and Alcohol Dependence, 141, 92-98. https://doi.org/10.1016/j.drugalcdep.2014.05.010.
Lambers, D. S., & Clark, K. E. (1996). The maternal and fetal physiologic effects of nicotine. Seminars in Perinatology, 20(2), 115-126. https://doi.org/10.1016/S0146-0005(96)80079-6.
Lange, S., Probst, C., Rehm, J., & Popova, S. (2018). National, regional, and global prevalence of smoking during pregnancy in the general population: A systematic review and meta-analysis. The Lancet Global Health, 6(7), e769-e776. https://doi.org/10.1016/s2214-109x(18)30223-7.
Lee, H., Chung, S., & Noh, J. (2016). Maternal nicotine exposure during late gestation and lactation increases anxiety-like and impulsive decision-making behavior in adolescent offspring of rat. Toxicological Research, 32(4), 275-280. https://doi.org/10.5487/tr.2016.32.4.275.
Levin, E. D., Lawrence, S., Petro, A., Horton, K., Seidler, F. J., & Slotkin, T. A. (2006). Increased nicotine self-administration following prenatal exposure in female rats. Pharmacology, Biochemistry and Behavior, 85(3), 669-674. https://doi.org/10.1016/j.pbb.2006.11.006.
Lichtensteiger, W., & Schlumpf, M. (1985). Prenatal nicotine affects fetal testosterone and sexual dimorphism of saccharin preference. Pharmacology, Biochemistry and Behavior, 23, 439-444. https://doi.org/10.1016/0091-3057(85)90018-8.
Lin, M. H., Takahashi, M. P., Takahashi, Y., & Tsumoto, T. (1994). Intracellular calcium increase induced by GABA in visual cortex of fetal and neonatal rats and its disappearance with development. Neuroscience Research, 20(1), 85-94. https://doi.org/10.1016/0168-0102(94)90025-6.
Lipton, J. W., Robie, H. C., Ling, Z., Weese-Mayer, D. E., & Carvey, P. M. (1998). The magnitude of brain dopamine depletion from prenatal cocaine exposure is a function of uterine position. Neurotoxicology and Teratology, 20(4), 373-382. https://doi.org/10.1016/s0892-0362(97)00143-8.
Lodge, D. J., & Grace, A. A. (2005). Acute and chronic corticotropin-releasing factor 1 receptor blockade inhibits cocaine-induced dopamine release: Correlation with dopamine neuron activity. Journal of Pharmacology and Experimental Therapeutics, 314(1), 201-206. https://doi.org/10.1124/jpet.105.084913.
Lodge, D. J., & Grace, A. A. (2006). The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proceedings of the National Academy of Sciences U S A, 103(13), 5167-5172. https://doi.org/10.1073/pnas.0510715103.
López-Chávez, A., Miledi, R., & Martínez-Torres, A. (2005). Cloning and functional expression of the bovine GABAC ρ2 subunit: Molecular evidence of a widespread distribution in the CNS. Neuroscience Research, 53(4), 421-427. https://doi.org/10.1016/j.neures.2005.08.014.
Luck, W., Nau, H., Hansen, R., & Steldinger, R. (1985). Extent of nicotine and cotinine transfer to the human fetus, placenta and amniotic fluid of smoking mothers. Developmental Pharmacology and Therapeutics, 8(6), 384-395. https://doi.org/10.1159/000457063.
Luquin, E., Huerta, I., Aymerich, M. S., & Mengual, E. (2018). Stereological estimates of glutamatergic, GABAergic, and cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei in the rat. Frontiers in Neuroanatomy, 12, 34. https://doi.org/10.3389/fnana.2018.00034.
Maquet, P., Peters, J., Aerts, J., Delfiore, G., Degueldre, C., Luxen, A., & Franck, G. (1996). Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature, 383(6596), 163-166. https://doi.org/10.1038/383163a0.
Martin, M. M., McCarthy, D. M., Schatschneider, C., Trupiano, M. X., Jones, S. K., Kalluri, A., & Bhide, P. G. (2019). Effects of developmental nicotine exposure on frontal cortical GABA-to-non-GABA neuron ratio and novelty-seeking behavior. Cerebral Cortex, 30(3), 1830-1842. https://doi.org/10.1093/cercor/bhz207.
Massey, S. C., Linn, D. M., Kittila, C. A., & Mirza, W. (1997). Contributions of GABAA receptors and GABAC receptors to acetylcholine release and directional selectivity in the rabbit retina. Visual Neuroscience, 14(5), 939-948. https://doi.org/10.1017/S0952523800011652.
McCarley, R. W. (2007). Neurobiology of REM and NREM sleep. Sleep Medicine, 8(4), 302-330. https://doi.org/10.1016/j.sleep.2007.03.005.
McNair, L. F., & Kohlmeier, K. A. (2015). Prenatal nicotine is associated with reduced AMPA and NMDA receptor-mediated rises in calcium within the laterodorsal tegmentum: A pontine nucleus involved in addiction processes. Journal of Developmental Origins of Health and Disease, 6(3), 225-241. https://doi.org/10.1017/s2040174414000439.
Milligan, C., Buckley, N., Garret, M., Deuchars, J., & Deuchars, S. (2004). Evidence for inhibition mediated by coassembly of GABA sub(A) and GABA sub(C) receptor subunits in native central neurons. Journal of Neuroscience, 24(33), 7241-7250. https://doi.org/10.1523/JNEUROSCI.1979-04.2004.
Motlagh, M. G., Sukhodolsky, D. G., Landeros-Weisenberger, A., Katsovich, L., Thompson, N., Scahill, L., … Leckman, J. F. (2011). Adverse effects of heavy prenatal maternal smoking on attentional control in children with ADHD. Journal of Attention Disorders, 15, 593-603. https://doi.org/10.1177/1087054710374576.
Naffaa, M. M., Hung, S., Chebib, M., Johnston, G. A. R., & Hanrahan, J. R. (2017). GABA-rho receptors: Distinctive functions and molecular pharmacology. British Journal of Pharmacology, 174(13), 1881-1894. https://doi.org/10.1111/bph.13768.
Nelson, A., & Killcross, S. (2006). Amphetamine exposure enhances habit formation. Journal of Neuroscience, 26(14), 3805-3812. https://doi.org/10.1523/jneurosci.4305-05.2006.
Nelson, J. F., Felicio, L. S., Randall, P. K., Sims, C., & Finch, C. E. (1982). A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I. Cycle frequency, length and vaginal cytology. Biology of Reproduction, 27(2), 327-339. https://doi.org/10.1095/biolreprod27.2.327.
Ninomiya, Y., Kayama, Y., & Koyama, Y. (2005). Postnatal development of cholinergic neurons in the mesopontine tegmentum revealed by histochemistry. International Journal of Developmental Neuroscience, 23(8), 711-721. https://doi.org/10.1016/j.ijdevneu.2005.09.002.
Omelchenko, N., & Sesack, S. R. (2005). Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area. Journal of Comparative Neurology, 483(2), 217-235. https://doi.org/10.1002/cne.20417.
Omelchenko, N., & Sesack, S. R. (2006). Cholinergic axons in the rat ventral tegmental area synapse preferentially onto mesoaccumbens dopamine neurons. The Journal of Comparative Neurology, 494(6), 863-875. https://doi.org/10.1002/cne.20852.
Pan, Y., & Qian, H. (2005). Interactions between rho and gamma2 subunits of the GABA receptor. Journal of Neurochemistry, 94(2), 482-490. https://doi.org/10.1111/j.1471-4159.2005.03225.x.
Parameshwaran, K., Buabeid, M. A., Karuppagounder, S. S., Uthayathas, S., Thiruchelvam, K., Shonesy, B., … Suppiramaniam, V. (2012). Developmental nicotine exposure induced alterations in behavior and glutamate receptor function in hippocampus. Cellular and Molecular Life Sciences, 69(5), 829-841. https://doi.org/10.1007/s00018-011-0805-4.
Pauly, J. R., Sparks, J. A., Hauser, K. F., & Pauly, T. H. (2004). In utero nicotine exposure causes persistent, gender-dependant changes in locomotor activity and sensitivity to nicotine in C57Bl/6 mice. International Journal of Developmental Neuroscience, 22, 329-337. https://doi.org/10.1016/j.ijdevneu.2004.05.009.
Paus, T., Nawazkhan, I., Leonard, G., Perron, M., Pike, G. B., Pitiot, A., … Pausova, Z. (2008). Corpus callosum in adolescent offspring exposed prenatally to maternal cigarette smoking. NeuroImage, 40, 435-441. https://doi.org/10.1016/j.neuroimage.2007.10.066.
Paz, R., Barsness, B., Martenson, T., Tanner, D., & Allan, A. M. (2007). Behavioral teratogenicity induced by nonforced maternal nicotine consumption. Neuropsychopharmacology, 32(3), 693-699. https://doi.org/10.1038/sj.npp.1301066.
Polli, F. S., Ipsen, T. H., Caballero-Puntiverio, M., Osterbog, T. B., Aznar, S., Andreasen, J. T., & Kohlmeier, K. A. (2020). Cellular and molecular changes in hippocampal glutamate signaling and alterations in learning, attention, and impulsivity following prenatal nicotine exposure. Molecular Neurobiology, 57(4), 2002-2020. https://doi.org/10.1007/s12035-019-01854-9.
Polli, F. S., & Kohlmeier, K. A. (2018). Prenatal nicotine exposure alters postsynaptic AMPA receptors and glutamate neurotransmission within the laterodorsal tegmentum (LDT) of juvenile mice. Neuropharmacology, 137, 71-85. https://doi.org/10.1016/j.neuropharm.2018.04.024.
Polli, F. S., & Kohlmeier, K. A. (2019a). Alterations in NMDAR-mediated signaling within the laterodorsal tegmental nucleus are associated with prenatal nicotine exposure. Neuropharmacology, 158, 107744. https://doi.org/10.1016/j.neuropharm.2019.107744.
Polli, F. S., & Kohlmeier, K. A. (2019b). Prenatal nicotine exposure in rodents: Why are there so many variations in behavioral outcomes? Nicotine & Tobacco Research. https://doi.org/10.1093/ntr/ntz196.
Polli, F. S., Scharff, M. B., Ipsen, T. H., Aznar, S., Kohlmeier, K. A., & Andreasen, J. T. (2020). Prenatal nicotine exposure in mice induces sex-dependent anxiety-like behavior, cognitive deficits, hyperactivity, and changes in the expression of glutamate receptor associated genes in the prefrontal cortex. Pharmacology, Biochemistry and Behavior, 195, 172951. https://doi.org/10.1016/j.pbb.2020.172951.
Qian, H., & Ripps, H. (1999). Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA rho- and gamma 2-subunits. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1436), 2419-2425. https://doi.org/10.1098/rspb.1999.0941.
Roberts, D. C. S., & Andrews, M. M. (1997). Baclofen suppression of cocaine self-administration: Demonstration using a discrete trials procedure. Psychopharmacology, 131(3), 271-277. https://doi.org/10.1007/s002130050293.
Rogers, J. M. (2009). Tobacco and pregnancy. Reproductive Toxicology, 28(2), 152-160. https://doi.org/10.1016/j.reprotox.2009.03.012.
Salihu, H. M., & Wilson, R. E. (2007). Epidemiology of prenatal smoking and perinatal outcomes. Early Human Development, 83(11), 713-720. https://doi.org/10.1016/j.earlhumdev.2007.08.002.
Santiago, S. E., & Huffman, K. J. (2014). Prenatal nicotine exposure increases anxiety and modifies sensorimotor integration behaviors in adult female mice. Neuroscience Research, 79, 41-51. https://doi.org/10.1016/j.neures.2013.10.006.
Schmidt, M., Boller, M., Ozen, G., & Hall, W. C. (2001). Disinhibition in rat superior colliculus mediated by GABAc receptors. Journal of Neuroscience, 21(2), 691-699.
Schneider, T., Bizarro, L., Asherson, P. J., & Stolerman, I. P. (2012). Hyperactivity, increased nicotine consumption and impaired performance in the five-choice serial reaction time task in adolescent rats prenatally exposed to nicotine. Psychopharmacology, 223(4), 401-415. https://doi.org/10.1007/s00213-012-2728-7.
Schneider, T., Ilott, N., Brolese, G., Bizarro, L., Asherson, P. J., & Stolerman, I. P. (2011). Prenatal exposure to nicotine impairs performance of the 5-choice serial reaction time task in adult rats. Neuropsychopharmacology, 36(5), 1114-1125. https://doi.org/10.1038/npp.2010.249.
Schwenke, E., Fasching, P. A., Faschingbauer, F., Pretscher, J., Kehl, S., Peretz, R., … Schneider, M. (2018). Predicting attention deficit hyperactivity disorder using pregnancy and birth characteristics. Archives of Gynecology and Obstetrics, 298, 889-895. https://doi.org/10.1007/s00404-018-4888-0.
Shoaib, M., Swanner, L. S., Beyer, C. E., Goldberg, S. R., & Schindler, C. W. (1998). The GABAB agonist baclofen modifies cocaine self-administration in rats. Behavioural Pharmacology, 9(3), 195-206.
Sieghart, W., & Ernst, M. (2005). Heterogeneity of GABAA Receptors: Revived Interest in the Development of Subtype-selective Drugs. Current Medicinal Chemistry - Central Nervous System Agents, 5(3), 217-242. https://doi.org/10.2174/1568015054863837.
Slotkin, T. A., MacKillop, E. A., Rudder, C. L., Ryde, I. T., Tate, C. A., & Seidler, F. J. (2007). Permanent, sex-selective effects of prenatal or adolescent nicotine exposure, separately or sequentially, in rat brain regions: Indices of cholinergic and serotonergic synaptic function, cell signaling, and neural cell number and size at 6 months of age. Neuropsychopharmacology, 32(5), 1082-1097. https://doi.org/10.1038/sj.npp.1301231.
Smith, A. M., Dwoskin, L. P., & Pauly, J. R. (2010). Early exposure to nicotine during critical periods of brain development: Mechanisms and consequences. Journal of Pediatric Biochemistry, 1(2), 125-141. https://doi.org/10.3233/jpb-2010-0012.
Steriade, M., Datta, S., Pare, D., Oakson, G., & Curro Dossi, R. C. (1990). Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. The Journal of Neuroscience, 10(8), 2541-2559. https://doi.org/10.1523/JNEUROSCI.10-08-02541.1990.
Taylor, J. A., & Sanderson, M. (1995). A reexamination of the risk factors for the sudden infant death syndrome. Journal of Pediatrics, 126(6), 887-891. https://doi.org/10.1016/s0022-3476(95)70202-4.
Thakur, G. A., Sengupta, S. M., Grizenko, N., Schmitz, N., Page, V., & Joober, R. (2013). Maternal smoking during pregnancy and ADHD: A comprehensive clinical and neurocognitive characterization. Nicotine & Tobacco Research, 15, 149-157. https://doi.org/10.1093/ntr/nts102.
Toro, R., Leonard, G., Lerner, J. V., Lerner, R. M., Perron, M., Pike, G. B., … Paus, T. (2008). Prenatal exposure to maternal cigarette smoking and the adolescent cerebral cortex. Neuropsychopharmacology, 33, 1019-1027. https://doi.org/10.1038/sj.npp.1301484.
Ulloor, J., Mavanji, V., Saha, S., Siwek, D. F., & Datta, S. (2004). Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat. Journal of Neurophysiology, 91(4), 1822-1831. https://doi.org/10.1152/jn.01104.2003.
Vaglenova, J., Birru, S., Pandiella, N. M., & Breese, C. R. (2004). An assessment of the long-term developmental and behavioral teratogenicity of prenatal nicotine exposure. Behavioral Brain Research, 150(1-2), 159-170. https://doi.org/10.1016/j.bbr.2003.07.005.
Van Dort, C. J., Zachs, D. P., Kenny, J. D., Zheng, S., Goldblum, R. R., Gelwan, N. A., … Brown, E. N. (2015). Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proceedings of the National Academy of Sciences U S A, 112(2), 584-589. https://doi.org/10.1073/pnas.1423136112.
Vizuete, A. F. K., Hansen, F., Da Re, C., Leal, M. B., Galland, F., Concli Leite, M., & Goncalves, C. A. (2019). GABAA modulation of S100B Secretion In Acute Hippocampal Slices And Astrocyte Cultures. Neurochemical Research, 44(2), 301-311. https://doi.org/10.1007/s11064-018-2675-8.
Wegelius, K., Pasternack, M., Hiltunen, J. O., Rivera, C., Kaila, K., Saarma, M., & Reeben, M. (1998). Distribution of GABA receptor ρ subunit transcripts in the rat brain. European Journal of Neuroscience, 10(1), 350-357. https://doi.org/10.1046/j.1460-9568.1998.00023.x.
Weissman, M. M., Warner, V., Wickramaratne, P. J., & Kandel, D. B. (1999). Maternal smoking during pregnancy and psychopathology in offspring followed to adulthood. Journal of the American Academy of Child and Adolescent Psychiatry, 38, 892-899. https://doi.org/10.1097/00004583-199907000-00020.
Wolf, M. E. (2002). Addiction: Making the connection between behavioral changes and neuronal plasticity in specific pathways. Molecular Interventions, 2(3), 146-157. https://doi.org/10.1124/mi.2.3.146.
Wollman, L. B., Levine, R. B., & Fregosi, R. F. (2018). Developmental plasticity of GABAergic neurotransmission to brainstem motoneurons. Journal of Physiology, 596(23), 5993-6008. https://doi.org/10.1113/jp274923.
Woodward, R. M., Polenzani, L., & Miledi, R. (1993). Characterization of bicuculline/baclofen-insensitive (rho-like) gamma-aminobutyric acid receptors expressed in Xenopus oocytes. II. Pharmacology of gamma-aminobutyric acidA and gamma-aminobutyric acidB receptor agonists and antagonists. Molecular Pharmacology, 43(4), 609-625.
Yochum, C., Doherty-Lyon, S., Hoffman, C., Hossain, M. M., Zelikoff, J. T., & Richardson, J. R. (2014). Prenatal cigarette smoke exposure causes hyperactivity and aggressive behavior: Role of altered catecholamines and BDNF. Experimental Neurology, 254, 145-152. https://doi.org/10.1016/j.expneurol.2014.01.016.
Zhu, J., Fan, F., McCarthy, D. M., Zhang, L., Cannon, E. N., Spencer, T. J., … Bhide, P. G. (2017). A prenatal nicotine exposure mouse model of methylphenidate responsive ADHD-associated cognitive phenotypes. International Journal of Developmental Neuroscience, 58, 26-34. https://doi.org/10.1016/j.ijdevneu.2017.01.014.
معلومات مُعتمدة: Research Program Grant to KAK International Philip Morris External Research Program; Post Doctoral Fellowship to JK International Lundbeckfonden
فهرسة مساهمة: Keywords: ADHD; GABAA-ρ receptors; REM sleep; cognitive; drug addiction; nicotine
المشرفين على المادة: 0 (Nicotinic Agonists)
0 (Receptors, GABA-A)
0 (Receptors, GABA-B)
6M3C89ZY6R (Nicotine)
SY7Q814VUP (Calcium)
تواريخ الأحداث: Date Created: 20200707 Date Completed: 20210618 Latest Revision: 20210618
رمز التحديث: 20240628
DOI: 10.1002/dneu.22772
PMID: 32628361
قاعدة البيانات: MEDLINE
الوصف
تدمد:1932-846X
DOI:10.1002/dneu.22772