دورية أكاديمية

Large-scale integration of artificial atoms in hybrid photonic circuits.

التفاصيل البيبلوغرافية
العنوان: Large-scale integration of artificial atoms in hybrid photonic circuits.
المؤلفون: Wan NH; Research Laboratory of Electronics, MIT, Cambridge, MA, USA. noelwan@mit.edu., Lu TJ; Research Laboratory of Electronics, MIT, Cambridge, MA, USA. tsungjul@mit.edu., Chen KC; Research Laboratory of Electronics, MIT, Cambridge, MA, USA., Walsh MP; Research Laboratory of Electronics, MIT, Cambridge, MA, USA., Trusheim ME; Research Laboratory of Electronics, MIT, Cambridge, MA, USA., De Santis L; Research Laboratory of Electronics, MIT, Cambridge, MA, USA., Bersin EA; Research Laboratory of Electronics, MIT, Cambridge, MA, USA., Harris IB; Research Laboratory of Electronics, MIT, Cambridge, MA, USA., Mouradian SL; Research Laboratory of Electronics, MIT, Cambridge, MA, USA.; University of California Berkeley, Berkeley, CA, USA., Christen IR; Research Laboratory of Electronics, MIT, Cambridge, MA, USA., Bielejec ES; Sandia National Laboratories, Albuquerque, NM, USA., Englund D; Research Laboratory of Electronics, MIT, Cambridge, MA, USA. englund@mit.edu.
المصدر: Nature [Nature] 2020 Jul; Vol. 583 (7815), pp. 226-231. Date of Electronic Publication: 2020 Jul 08.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مستخلص: A central challenge in developing quantum computers and long-range quantum networks is the distribution of entanglement across many individually controllable qubits 1 . Colour centres in diamond have emerged as leading solid-state 'artificial atom' qubits 2,3 because they enable on-demand remote entanglement 4 , coherent control of over ten ancillae qubits with minute-long coherence times 5 and memory-enhanced quantum communication 6 . A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. So far, these efforts have been stymied by qubit inhomogeneities, low device yield and complex device requirements. Here we introduce a process for the high-yield heterogeneous integration of 'quantum microchiplets'-diamond waveguide arrays containing highly coherent colour centres-on a photonic integrated circuit (PIC). We use this process to realize a 128-channel, defect-free array of germanium-vacancy and silicon-vacancy colour centres in an aluminium nitride PIC. Photoluminescence spectroscopy reveals long-term, stable and narrow average optical linewidths of 54 megahertz (146 megahertz) for germanium-vacancy (silicon-vacancy) emitters, close to the lifetime-limited linewidth of 32 megahertz (93 megahertz). We show that inhomogeneities of individual colour centre optical transitions can be compensated in situ by integrated tuning over 50 gigahertz without linewidth degradation. The ability to assemble large numbers of nearly indistinguishable and tunable artificial atoms into phase-stable PICs marks a key step towards multiplexed quantum repeaters 7,8 and general-purpose quantum processors 9-12 .
References: Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018). (PMID: 30337383)
Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).
Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).
Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018); correction 562, E2 (2018). (PMID: 29899475)
Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).
Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020). (PMID: 32238931)
Muralidharan, S. et al. Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016). (PMID: 268766704753438)
Lo Piparo, N., Munro, W. J. & Nemoto, K. Quantum multiplexing. Phys. Rev. A 99, 022337 (2019).
Nemoto, K. et al. Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 031022 (2014).
Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).
Nickerson, N. H., Fitzsimons, J. F. & Benjamin, S. C. Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4, 041041 (2014).
Choi, H., Pant, M., Guha, S. & Englund, D. Percolation-based architecture for cluster state creation using photon-mediated entanglement between atomic memories. npj Quantum Inf. 5, 104 (2019).
Kim, J.-H. et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett. 17, 7394–7400 (2017). (PMID: 29131963)
Elshaari, A. W. et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun. 8, 379 (2017). (PMID: 288554995577278)
Osada, A. et al. Strongly coupled single-quantum-dot–cavity system integrated on a CMOS-processed silicon photonic chip. Phys. Rev. Appl. 11, 024071 (2019).
Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015). (PMID: 255753464354051)
Mouradian, S. L. et al. Scalable integration of long-lived quantum memories into a photonic circuit. Phys. Rev. X 5, 031009 (2015).
Lu, T.-J. et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Opt. Express 26, 11147–11160 (2018). (PMID: 29716039)
Xiong, C., Pernice, W. H. P. & Tang, H. X. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12, 3562–3568 (2012). (PMID: 22663299)
Zhu, D. et al. Superconducting nanowire single-photon detector on aluminum nitride. In Conference on Lasers and Electro-Optics FTu4C.1 (Optical Society of America, 2016).
Sukachev, D. D. et al. Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 119, 223602 (2017). (PMID: 29286819)
Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017). (PMID: 28621982)
Becker, J. N. & Becher, C. Coherence properties and quantum control of silicon vacancy color centers in diamond. Phys. Status Solidi A 214, 1770170 (2017).
Siyushev, P. et al. Optical and microwave control of germanium-vacancy center spins in diamond. Phys. Rev. B 96, 081201(R) (2017).
Nguyen, C. T. et al. Quantum network nodes based on diamond qubits with an efficient nanophotonic interface. Phys. Rev. Lett. 123, 183602 (2019). (PMID: 31763904)
Mouradian, S., Wan, N. H., Schröder, T. & Englund, D. Rectangular photonic crystal nanobeam cavities in bulk diamond. Appl. Phys. Lett. 111, 021103 (2017).
Wan, N. H., Mouradian, S. & Englund, D. Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond. Appl. Phys. Lett. 112, 141102 (2018).
Lueng, C. M., Chan, H. L. W., Surya, C. & Choy, C. L. Piezoelectric coefficient of aluminum nitride and gallium nitride. J. Appl. Phys. 88, 5360–5363 (2000).
Guo, X., Zou, C.-L., Jung, H. & Tang, H. X. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett. 117, 123902 (2016). (PMID: 27689276)
Jung, H., Xiong, C., Fong, K. Y., Zhang, X. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013). (PMID: 23903149)
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013). (PMID: 23615617)
Rogers, L. J. et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat. Commun. 5, 4739 (2014). (PMID: 25162729)
Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B 97, 205444 (2018).
Maity, S. et al. Spectral alignment of single-photon emitters in diamond using strain gradient. Phys. Rev. Appl. 10, 024050 (2018).
Machielse, B. et al. Quantum interference of electromechanically stabilized emitters in nanophotonic devices. Phys. Rev. X 9, 031022 (2019).
Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987). (PMID: 10035403)
Grange, T. et al. Reducing phonon-induced decoherence in solid-state single-photon sources with cavity quantum electrodynamics. Phys. Rev. Lett. 118, 253602 (2017). (PMID: 28696749)
Mouradian, S. L. & Englund, D. A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters. APL Photon. 2, 046103 (2017).
Bradac, C., Gao, W., Forneris, J., Trusheim, M. E. & Aharonovich, I. Quantum nanophotonics with group IV defects in diamond. Nat. Commun. 10, 5625 (2019); correction 11, 360 (2020). (PMID: 318190506901484)
Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).
Zhong, T. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Phys. Rev. Lett. 121, 183603 (2018). (PMID: 30444379)
Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018). (PMID: 29956997)
Bersin, E. et al. Individual control and readout of qubits in a sub-diffraction volume. npj Quantum Inf. 5, 38 (2019).
Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018).
Taballione, C. et al. 8×8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express 27, 26842–26857 (2019). (PMID: 31674557)
Seok, T. J., Quack, N., Han, S., Muller, R. S. & Wu, M. C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 3, 64–70 (2016).
Kim, D. et al. A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nat. Electron. 2, 284–289 (2019).
Patra, B. et al. Cryo-CMOS circuits and systems for quantum computing applications. IEEE J. Solid-State Circuits 53, 309–321 (2018).
Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349–354 (2018); 560, E4 (2018). (PMID: 29670262)
Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013). (PMID: 23302859)
Schröder, T. et al. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nat. Commun. 8, 15376 (2017). (PMID: 285480975458551)
Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM – the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B 268, 1818–1823 (2010).
Wan, N. H. et al. Efficient extraction of light from a nitrogen-vacancy center in a diamond parabolic reflector. Nano Lett. 18, 2787–2793 (2018). (PMID: 29601205)
Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005). (PMID: 15905398)
Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013). (PMID: 23385570)
Gschrey, M. et al. In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy. Appl. Phys. Lett. 102, 251113 (2013).
Sapienza, L., Davanço, M., Badolato, A. & Srinivasan, K. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 6, 7833 (2015). (PMID: 262114424525159)
Thyrrestrup, H. et al. Quantum optics with near-lifetime-limited quantum-dot transitions in a nanophotonic waveguide. Nano Lett. 18, 1801–1806 (2018). (PMID: 29494160)
Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007).
Sohn, Y.-I. et al. Controlling the coherence of a diamond spin qubit through its strain environment. Nat. Commun. 9, 2012 (2018). (PMID: 297895535964250)
Maier, F., Riedel, M., Mantel, B., Ristein, J. & Ley, L. Origin of surface conductivity in diamond. Phys. Rev. Lett. 85, 3472–3475 (2000). (PMID: 11030924)
Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014). (PMID: 25259977)
تواريخ الأحداث: Date Created: 20200710 Date Completed: 20200716 Latest Revision: 20210326
رمز التحديث: 20221213
DOI: 10.1038/s41586-020-2441-3
PMID: 32641812
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-020-2441-3