دورية أكاديمية

Asymmetric mass ratios for bright double neutron-star mergers.

التفاصيل البيبلوغرافية
العنوان: Asymmetric mass ratios for bright double neutron-star mergers.
المؤلفون: Ferdman RD; Faculty of Science, University of East Anglia, Norwich, UK. r.ferdman@uea.ac.uk., Freire PCC; Max-Planck-Institut für Radioastronomie, Bonn, Germany., Perera BBP; Arecibo Observatory, Arecibo, Puerto Rico., Pol N; Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA.; Center for Gravitational Waves and Cosmology, West Virginia University, Morgantown, WV, USA., Camilo F; South African Radio Astronomy Observatory, Cape Town, South Africa., Chatterjee S; Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY, USA.; Department of Astronomy, Cornell University, Ithaca, NY, USA., Cordes JM; Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY, USA.; Department of Astronomy, Cornell University, Ithaca, NY, USA., Crawford F; Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA, USA., Hessels JWT; Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, The Netherlands.; ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands., Kaspi VM; Department of Physics, McGill University, Montreal, Quebec, Canada.; McGill Space Institute, McGill University, Montreal, Quebec, Canada., McLaughlin MA; Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA.; Center for Gravitational Waves and Cosmology, West Virginia University, Morgantown, WV, USA., Parent E; Department of Physics, McGill University, Montreal, Quebec, Canada.; McGill Space Institute, McGill University, Montreal, Quebec, Canada., Stairs IH; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada., van Leeuwen J; ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands.
المصدر: Nature [Nature] 2020 Jul; Vol. 583 (7815), pp. 211-214. Date of Electronic Publication: 2020 Jul 08.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مستخلص: The discovery of a radioactively powered kilonova associated with the binary neutron-star merger GW170817 remains the only confirmed electromagnetic counterpart to a gravitational-wave event 1,2 . Observations of the late-time electromagnetic emission, however, do not agree with the expectations from standard neutron-star merger models. Although the large measured ejecta mass 3,4 could be explained by a progenitor system that is asymmetric in terms of the stellar component masses (that is, with a mass ratio q of 0.7 to 0.8) 5 , the known Galactic population of merging double neutron-star systems (that is, those that will coalesce within billions of years or less) has until now consisted only of nearly equal-mass (q > 0.9) binaries 6 . The pulsar PSR J1913+1102 is a double system in a five-hour, low-eccentricity (0.09) orbit, with an orbital separation of 1.8 solar radii 7 , and the two neutron stars are predicted to coalesce in [Formula: see text] million years owing to gravitational-wave emission. Here we report that the masses of the pulsar and the companion neutron star, as measured by a dedicated pulsar timing campaign, are 1.62 ± 0.03 and 1.27 ± 0.03 solar masses, respectively. With a measured mass ratio of q = 0.78 ± 0.03, this is the most asymmetric merging system reported so far. On the basis of this detection, our population synthesis analysis implies that such asymmetric binaries represent between 2 and 30 per cent (90 per cent confidence) of the total population of merging binaries. The coalescence of a member of this population offers a possible explanation for the anomalous properties of GW170817, including the observed kilonova emission from that event.
References: Abbott, B. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). (PMID: 29099225)
Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, 12 (2017).
Abbott, B. P. et al. Estimating the contribution of dynamical ejecta in the kilonova associated with GW170817. Astrophys. J. Lett. 850, 39 (2017).
Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, 17 (2017).
Pankow, C. On GW170817 and the Galactic binary neutron star population. Astrophys. J. 866, 60 (2018).
Tauris, T. M. et al. Formation of double neutron star systems. Astrophys. J. 846, 170 (2017).
Lazarus, P. et al. Einstein@Home discovery of a double neutron star binary in the PALFA survey. Astrophys. J. 831, 150 (2016).
Kramer, M. et al. Tests of general relativity from timing the double pulsar. Science 314, 97–102 (2006). (PMID: 16973838)
Ferdman, R. D. et al. PSR J1756−2251: a pulsar with a low-mass neutron star companion. Mon. Not. R. Astron. Soc. 443, 2183–2196 (2014).
Stovall, K. et al. PALFA discovery of a highly relativistic double neutron star binary. Astrophys. J. Lett. 854, 22 (2018).
Tauris, T. M. et al. Ultra-stripped type Ic supernovae from close binary evolution. Astrophys. J. Lett. 778, 23 (2013).
Miyaji, S., Nomoto, K., Yokoi, K. & Sugimoto, D. Supernova triggered by electron captures. Publ. Astron. Soc. Jpn. 32, 303–329 (1980).
Nomoto, K. Evolution of 8–10 solar mass stars toward electron capture supernovae. I – formation of electron-degenerate O + NE + MG cores. Astrophys. J. 277, 791–805 (1984).
Podsiadlowski, P. et al. The double pulsar J0737–3039: testing the neutron star equation of state. Mon. Not. R. Astron. Soc. 361, 1243–1249 (2005).
Martinez, J. G. et al. Pulsar J0453+1559: a double neutron star system with a large mass asymmetry. Astrophys. J. 812, 143 (2015).
Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80–84 (2017). (PMID: 29094687)
Hotokezaka, K. et al. Mass ejection from the merger of binary neutron stars. Phys. Rev. D 87, 024001 (2013).
Radice, D. & Dai, L. Multimessenger parameter estimation of GW170817. Eur. Phys. J. A 55, 50 (2019).
Siegel, D. M. & Metzger, B. D. Three-dimensional GRMHD simulations of neutrino-cooled accretion disks from neutron star mergers. Astrophys. J. 858, 52 (2018).
Fernández, R., Tchekhovskoy, A., Quataert, E., Foucart, F. & Kasen, D. Long-term GRMHD simulations of neutron star merger accretion discs: implications for electromagnetic counterparts. Mon. Not. R. Astron. Soc. 482, 3373–3393 (2018).
Radice, D. et al. Binary neutron star mergers: mass ejection, electromagnetic counterparts and nucleosynthesis. Astrophys. J. 869, 130 (2018).
Troja, E. et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71–74 (2017).
Haggard, D. et al. A deep Chandra X-ray study of neutron star coalescence GW170817. Astrophys. J. 848, L25 (2017).
Mooley, K. P. et al. A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature 554, 207–210 (2018). (PMID: 29261643)
Piro, A. L. & Kollmeier, J. A. Evidence for cocoon emission from the early light curve of SSS17a. Astrophys. J. 855, 103 (2018).
Metzger, B. D., Thompson, T. A. & Quataert, E. A magnetar origin for the kilonova ejecta in GW170817. Astrophys. J. 856, 101 (2018).
Li, S.-Z., Liu, L.-D., Yu, Y.-W. & Zhang, B. What powered the optical transient AT2017gfo associated with GW170817? Astrophys. J. Lett. 861, 12 (2018).
Chang, P. & Murray, N. GW170817: A neutron star merger in a mass-transferring triple system. Mon. Not. R. Astron. Soc. Lett. 474, 12–16 (2018).
Shibata, M. & Taniguchi, K. Merger of binary neutron stars to a black hole: disk mass, short gamma-ray bursts, and quasinormal mode ringing. Phys. Rev. D 73, 064027 (2006).
Rezzolla, L., Baiotti, L., Giacomazzo, B., Link, D. & Font, J. A. Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines. Class. Quantum Gravity 27, 114105 (2010).
Dietrich, T. & Ujevic, M. Modeling dynamical ejecta from binary neutron star mergers and implications for electromagnetic counterparts. Class. Quantum Gravity 34, 105014 (2017).
Lehner, L. et al. Unequal mass binary neutron star mergers and multimessenger signals. Class. Quantum Gravity 33, 184002 (2016).
Tanvir, N. R. et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500, 547–549 (2013). (PMID: 23912055)
Just, O., Bauswein, A., Pulpillo, R. A., Goriely, S. & Janka, H.-T. Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon. Not. R. Astron. Soc. 448, 541–567 (2015).
Read, J. S. et al. Measuring the neutron star equation of state with gravitational wave observations. Phys. Rev. D 79, 124033 (2009).
Lackey, B. D. & Wade, L. Reconstructing the neutron-star equation of state with gravitational-wave detectors from a realistic population of inspiralling binary neutron stars. Phys. Rev. D 91, 043002 (2015).
Agathos, M. et al. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars. Phys. Rev. D 92, 023012 (2015).
Abbott, B. P. et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018). (PMID: 30387654)
The LIGO Scientific Collaboration et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).
Hotokezaka, K. et al. A Hubble constant measurement from superluminal motion of the jet in GW170817. Nat. Astron. 3, 940–944 (2019).
Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Preprint at https://arxiv.org/abs/1807.06209 (2018).
Riess, A. G., Casertano, S., Yuan, W., Macri, L. M. & Scolnic, D. Large Magellanic Cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond CDM. Astrophys. J. 876, 85 (2019).
Damour, T. & Deruelle, N. General relativistic celestial mechanics of binary systems. I. The post-Newtonian motion. Ann. I.H.P. Phys. Theor. 43, 107–132 (1985).
Damour, T. & Deruelle, N. General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula. Ann. I.H.P. Phys. Theor. 44, 263–292 (1986).
Damour, T. & Taylor, J. H. Strong-field tests of relativistic gravity and binary pulsars. Phys. Rev. D 45, 1840–1868 (1992).
Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).
Lorimer, D. R. & Kramer, M. Handbook of Pulsar Astronomy Vol. 4 (Cambridge Univ. Press, 2004).
Taylor, J. H. Pulsar timing and relativistic gravity. Phil. Trans. R. Soc. A 341, 117–134 (1992).
Hotan, A. W., van Straten, W. & Manchester, R. N. PSRCHIVE and PSRFITS: an open approach to radio pulsar data storage and analysis. Publ. Astron. Soc. Pacif. 21, 302–309 (2004).
Shklovskii, I. S. Possible causes of the secular increase in pulsar periods. Sov. Astron. 13, 562 (1970).
Nice, D. J. & Taylor, J. H. PSR J2019+2425 and PSR J2322+2057 and the proper motions of millisecond pulsars. Astrophys. J. 441, 429–435 (1995).
Perera, B. B. P. et al. The dynamics of Galactic centre pulsars: constraining pulsar distances and intrinsic spin-down. Mon. Not. R. Astron. Soc. 487, 1025–1039 (2019).
Kruckow, M. U., Tauris, T. M., Langer, N., Kramer, M. & Izzard, R. G. Progenitors of gravitational wave mergers: binary evolution with the stellar grid-based code COMBINE. Mon. Not. R. Astron. Soc. 481, 1908–1949 (2018).
Kim, C., Kalogera, V. & Lorimer, D. R. The probability distribution of binary pulsar coalescence rates. I. Double neutron star systems in the Galactic field. Astrophys. J. 584, 985–995 (2003).
Kim, C., Perera, B. B. P. & McLaughlin, M. A. Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate. Mon. Not. R. Astron. Soc. 448, 928–938 (2015).
Pol, N., McLaughlin, M. & Lorimer, D. R. Future prospects for ground-based gravitational-wave detectors: the Galactic double neutron star merger rate revisited. Astrophys. J. 870, 71 (2019); erratum 874, 186 (2019).
Pol, N., McLaughlin, M. & Lorimer, D. R. An updated Galactic double neutron star merger rate based on radio pulsar populations. Res. Notes AAS 4, 22 (2020).
Bagchi, M., Lorimer, D. R. & Wolfe, S. On the detectability of eccentric binary pulsars. Mon. Not. R. Astron. Soc. 432, 1303–1314 (2013).
تواريخ الأحداث: Date Created: 20200710 Date Completed: 20200716 Latest Revision: 20210326
رمز التحديث: 20221213
DOI: 10.1038/s41586-020-2439-x
PMID: 32641814
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-020-2439-x