دورية أكاديمية

Design, synthesis, structure, in vitro cytotoxic activity evaluation and docking studies on target enzyme GSK-3β of new indirubin-3'-oxime derivatives.

التفاصيل البيبلوغرافية
العنوان: Design, synthesis, structure, in vitro cytotoxic activity evaluation and docking studies on target enzyme GSK-3β of new indirubin-3'-oxime derivatives.
المؤلفون: Dan NT; Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam.; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam.; Vietnam-Russia Tropical Center, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, 11307, Vietnam., Quang HD; Vietnam-Russia Tropical Center, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, 11307, Vietnam., Van Truong V; Vietnam-Russia Tropical Center, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, 11307, Vietnam., Huu Nghi D; Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam.; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam., Cuong NM; Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam.; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam., Cuong TD; Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi, 12116, Vietnam.; A&A Green Phoenix Group JSC, Phenikaa Research and Technology Institute (PRATI), No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi, 11313, Vietnam., Toan TQ; Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam.; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam., Bach LG; NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.; Center of Excellence for Functional Polymers and NanoEngineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam., Anh NHT; NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.; Center of Excellence for Functional Polymers and NanoEngineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam., Mai NT; Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam., Lan NT; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam.; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam., Van Chinh L; Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam. chinhluuvan@gmail.com.; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam. chinhluuvan@gmail.com., Quan PM; Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam. pham-minh.quan@inpc.vast.vn.; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11307, Vietnam. pham-minh.quan@inpc.vast.vn.
المصدر: Scientific reports [Sci Rep] 2020 Jul 10; Vol. 10 (1), pp. 11429. Date of Electronic Publication: 2020 Jul 10.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Drug Design*, Glycogen Synthase Kinase 3 beta/*chemistry , Indoles/*chemistry , Oximes/*chemistry, Antineoplastic Agents/pharmacology ; Catalytic Domain ; Cell Survival ; Chalcones/chemistry ; Computational Biology ; Crystallography, X-Ray ; HEK293 Cells ; HL-60 Cells ; Hep G2 Cells ; Humans ; Inhibitory Concentration 50 ; Ligands ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Molecular Docking Simulation ; Oximes/pharmacology ; Protein Binding ; Protein Domains ; Spectrometry, Mass, Electrospray Ionization
مستخلص: The addition of chalcone and amine components into indirubin-3'-oxime resulted in 15 new derivatives with high yields. Structures of new derivatives were also elucidated through 1D, 2D-NMR and HR-MS(ESI) spectra and X-ray crystallography. All designed compounds were screened for cytotoxic activity against four human cancer cell lines (HepG2, LU-1, SW480 and HL-60) and one human normal kidney cell line (HEK-293). Compound 6f exhibited the most marked cytotoxicity meanwhile cytotoxicity of compounds 6e, 6h and 6l was more profound toward cancer cell lines than toward normal cell. These new derivatives were further analyzed via molecular docking studies on GSK-3β enzyme. Docking analysis shows that most of the derivatives exhibited potential inhibition activity against GSK-3β with characteristic interacting residues in the binding site. The fast pulling of ligand scheme was then employed to refine the binding affinity and mechanism between ligands and GSK-3β enzyme. The computational results are expected to contribute to predicting enzyme target of the trial inhibitors and their possible interaction, from which the design of new cytotoxic agents could be created in the future.
References: Nussbaumer, S., Bonnabry, P., Veuthey, J. L. & Fleury-Souverain, S. Analysis of anticancer drugs: a review. Talanta 85, 2265–2289. https://doi.org/10.1016/j.talanta.2011.08.034 (2011). (PMID: 10.1016/j.talanta.2011.08.03421962644)
Pham, M. Q., Iscache, A. L., Pham, Q. L. & Gairin, J. E. Cytotoxic, apoptotic, and sensitization properties of ent-kaurane diterpenoids from Croton tonkinensis Gagnep on human liver cancer HepG2 and Hep3b cell lines. Fundam. Clin. Pharmacol. 30, 137–146. https://doi.org/10.1111/fcp.12176 (2015). (PMID: 10.1111/fcp.12176)
Embi, N., Rylatt, D. B. & Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle: separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 107, 519–527. https://doi.org/10.1111/j.1432-1033.1980.tb06059.x (1980). (PMID: 10.1111/j.1432-1033.1980.tb06059.x6249596)
Nikoulina, S. E. et al. Inhibition of glycogen synthase kinase 3 improves insulin action and glucose metabolism in human skeletal muscle. Diabetes 51, 2190–2198. https://doi.org/10.2337/diabetes.51.7.2190 (2002). (PMID: 10.2337/diabetes.51.7.219012086949)
Ougolkov, A. V. & Billadeau, D. D. Targeting GSK-3: a promising approach for cancer therapy?. Future Oncol. 2, 91–100. https://doi.org/10.2217/14796694.2.1.91 (2006). (PMID: 10.2217/14796694.2.1.9116556076)
Vadivelan, S., Sinha, B. N., Tajne, S. & Jagarlapudi, S. A. R. P. Fragment and knowledge-based design of selective GSK-3b inhibitors using virtual screening models. Eur. J. Med. Chem. 44, 2361–2371. https://doi.org/10.1016/j.ejmech.2008.08.012 (2008). (PMID: 10.1016/j.ejmech.2008.08.01218929433)
Ghosh, J. C. & Altieri, D. C. Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3β in colorectal cancer cells. Clin. Cancer Res. 11, 4580–4588. https://doi.org/10.1158/1078-0432.CCR-04-2624 (2005). (PMID: 10.1158/1078-0432.CCR-04-262415958644)
Ichimaru, Y. et al. Indirubin 3′-(O-oxiran-2-ylmethyl)oxime: a novel anticancer agent. Bioorg. Med. Chem. Lett. 25, 1403–1406. https://doi.org/10.1016/j.bmcl.2015.02.053 (2015). (PMID: 10.1016/j.bmcl.2015.02.05325765906)
Cuong, N. M. et al. Semi-synthesis of indirubin-3′-oxime from Strobilanthes cusia leaves, its acute and sub-chronic toxicity, in vitro and in vivo antitumor activity in Lewis lung carcinoma bearing mice. J. Pharmacogn. Phytochem. 5, 292–301 (2016).
Vougogiannopoulou, K. & Skaltsounis, A. L. From tyrian purple to kinase modulators: naturally halogenated indirubins and synthetic analogues. Planta Med. 78, 1515–1528. https://doi.org/10.1055/s-0032-1315261 (2012). (PMID: 10.1055/s-0032-131526122972384)
Bertrand, J. A. et al. Structural characterization of the GSK-3b active site using selective and non-selective ATP-mimetic inhibitors. J. Mol. Biol. 333, 393–407. https://doi.org/10.1016/j.jmb.2003.08.031 (2003). (PMID: 10.1016/j.jmb.2003.08.03114529625)
Pradeep, H. & Rajanikant, G. K. A rational approach to selective pharmacophore designing: an innovative strategy for specific recognition of Gsk3β. Mol. Divers. 16, 553–562. https://doi.org/10.1007/s11030-012-9387-9 (2012). (PMID: 10.1007/s11030-012-9387-9229187247089308)
Crisan, L., Avram, S. & Pacureanu, L. Pharmacophore-based screening and drug repurposing exemplified on glycogen synthase kinase-3 inhibitors. Mol. Divers. 21, 385–405. https://doi.org/10.1007/s11030-016-9724-5 (2017). (PMID: 10.1007/s11030-016-9724-528108896)
Aouidate, A. et al. Investigation of indirubin derivatives: a combination of 3D-QSAR, molecular docking, and ADMET towards the design of new DRAK2 inhibitors. Struct. Chem. 29, 1609–1622. https://doi.org/10.1007/s11224-018-1134-0 (2018). (PMID: 10.1007/s11224-018-1134-0)
Crisan, L. et al. QSAR study and molecular docking on indirubin inhibitors of glycogen synthase kinase-3. Cent. Eur. J. Chem. 1, 63–77. https://doi.org/10.2478/s11532-012-0133-z (2013). (PMID: 10.2478/s11532-012-0133-z)
Quesada-Romero, L. & Caballero, J. Docking and quantitative structure–activity relationship of oxadiazole derivates as inhibitors of GSK3. Mol. Divers. 18, 149–159. https://doi.org/10.1007/s11030-013-9483-5 (2014). (PMID: 10.1007/s11030-013-9483-524081608)
Pandraud, P. H. Structure Cristalline de l’Indirubine. Acta Cryst. 14, 901 (1961). (PMID: 10.1107/S0365110X61002667)
Berg, S., Hellberg, S., Nyloef, M. & Xue, Y. 2-hydroxy-3-heteroarylindole derivatives as GSK3 inhibitors. EP 1492785 B1. (Astra Zeneca AB, 2008).
Mazanetz, M. P. & Fischer, P. M. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat. Rev. Drug Discov. 6, 464–479. https://doi.org/10.1038/nrd2111 (2008). (PMID: 10.1038/nrd2111)
David, J. D., Aleksandar, K., Thomas, S., Desmond, G. H. & Walter, K. GSK3 inhibitors regulate MYCN mRNA levels and reduce neuroblastoma cell viability through multiple mechanisms, including p53 and Wnt signaling. Mol. Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-13-0560-T (2014). (PMID: 10.1158/1535-7163.MCT-13-0560-T24493697)
Ortwin, N., Jana, L., Ulf, D., Claudia, D. & Sigurd, L. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res. Notes https://doi.org/10.1186/1756-0500-7-273 (2014). (PMID: 10.1186/1756-0500-7-273)
De Bond, H. L. et al. Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602. https://doi.org/10.1038/363595a0 (1993). (PMID: 10.1038/363595a0)
Homeyer, N., Stoll, F., Hillisch, A. & Gohlke, H. Binding free energy calculations for lead optimization: assessment of their accuracy in an industrial drug design context. J. Chem. Theory Comput. 10, 3331–3344. https://doi.org/10.1021/ct5000296 (2014). (PMID: 10.1021/ct500029626588302)
Cavasotto, C. N., Aucar, M. G. & Adler, N. S. Computational chemistry in drug lead discovery and design. Int. J. Quantum Chem. 119, e25678. https://doi.org/10.1002/qua.25678 (2019). (PMID: 10.1002/qua.25678)
Zhang, R. & Monsma, F. Binding kinetics and mechanism of action: toward the discovery and development of better and best in class drugs. Expert Opin. Drug Discov. 5, 1023–1029. https://doi.org/10.1517/17460441.2010.520700 (2010). (PMID: 10.1517/17460441.2010.52070022827742)
Coderch, C. et al. A structure-based design of new C2- and C13-substituted taxanes: tubulin binding affinities and extended quantitative structure-activity relationships using comparative binding energy (COMBINE) analysis. Org. Biomol. Chem. 11, 3046–3056. https://doi.org/10.1039/C3OB40407B (2013). (PMID: 10.1039/C3OB40407B23532250)
Ngo, S. T. et al. Oversampling free energy perturbation simulation in determination of the ligand-binding free energy. J. Comput. Chem. 41, 611–618. https://doi.org/10.1002/jcc.26130 (2020). (PMID: 10.1002/jcc.2613031840845)
Ngo, S. T., Vu, K. B., Bui, L. M. & Vu, V. V. Effective estimation of ligand-binding affinity using biased sampling method. ACS Omega 4, 3887–3893. https://doi.org/10.1021/acsomega.8b03258 (2019). (PMID: 10.1021/acsomega.8b03258314595996648447)
Ngo, S. T., Nguyen, M. T. & Nguyen, M. T. Determination of the absolute binding free energies of HIV-1 protease inhibitors using non-equilibrium molecular dynamics simulations. Chem. Phys. Lett. 676, 12–17. https://doi.org/10.1016/j.cplett.2017.03.034 (2017). (PMID: 10.1016/j.cplett.2017.03.034)
Tung, S. T., Huynh, M. H. & Minh, T. N. Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work. J. Comput. Chem. 37, 2734–2742. https://doi.org/10.1002/jcc.24502 (2016). (PMID: 10.1002/jcc.24502)
Anh, L. D., Hung, T. N., Nga, N. T., Hương, L. M. & Chinh, L. V. Synthesis of chalcones containing azide group. Vietnam J. Chem. 53, 157–161 (2015).
Dan, N. T., Giang, N. T., Chinh, L. V. & Cuong, N. M. Synthesis of chalcones containing azide group. J. Trop. Sci. Technol. 16, 95–101 (2018).
Cuong, N. M., Thuy, D. T. T., Ha, N. V. & Tai, B. H. Isolation of indirubin from the leaves of Strobilanthes cusia. Vietnam J. Sci. Technol. 45, 195–199 (2007).
Perrin, D. D. & Armarego, W. L. F. Purifcation of Laboratory Chemical 3rd edn. (Pergamon Press, Oxford, 1998).
Monk, A. et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 83, 757–766. https://doi.org/10.1093/jnci/83.11.757 (1991). (PMID: 10.1093/jnci/83.11.757)
Czelen, P. & Szefler, B. Molecular dynamics study of the inhibitory effects of ChEMBL474807 on the enzymes GSK-3β and CDK-2. J. Mol. Model. 21, 74. https://doi.org/10.1007/s00894-015-2627-z (2015). (PMID: 10.1007/s00894-015-2627-z257541374353878)
The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, 2002).
Dym, O., Xenarios, I., Ke, H. M. & Colicelli, J. Molecular docking of competitive phosphodiesterase inhibitors. Mol. Pharmacol. 61, 20–25. https://doi.org/10.1124/mol.61.1.20 (2002). (PMID: 10.1124/mol.61.1.2011752202)
Rao, M. S. & Olson, A. J. Modelling of factor Xa-inhibitor complexes: a computational flexible docking approach. Proteins 34, 173–183. https://doi.org/10.1002/(SICI)1097-0134(19990201)34:2%3C173::AID-PROT3%3E3.0.CO;2-F (1999). (PMID: 10.1002/(SICI)1097-0134(19990201)34:2%3C173::AID-PROT3%3E3.0.CO;2-F10022353)
Petrek, M. et al. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinform. 7, 316. https://doi.org/10.1186/1471-2105-7-316 (2006). (PMID: 10.1186/1471-2105-7-316)
Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 78, 1950–1958. https://doi.org/10.1002/prot.22711 (2010). (PMID: 10.1002/prot.22711)
Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005 (2006). (PMID: 10.1016/j.jmgm.2005.12.00516458552)
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935. https://doi.org/10.1063/1.445869 (1983). (PMID: 10.1063/1.445869)
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001 (2015). (PMID: 10.1016/j.softx.2015.06.001)
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092. https://doi.org/10.1063/1.464397 (1993). (PMID: 10.1063/1.464397)
المشرفين على المادة: 0 (Antineoplastic Agents)
0 (Chalcones)
0 (Indoles)
0 (Ligands)
0 (Oximes)
0 (indirubin-3'-monoxime)
EC 2.7.11.1 (GSK3B protein, human)
EC 2.7.11.1 (Glycogen Synthase Kinase 3 beta)
تواريخ الأحداث: Date Created: 20200712 Date Completed: 20210111 Latest Revision: 20210710
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7351726
DOI: 10.1038/s41598-020-68134-8
PMID: 32651416
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-020-68134-8