دورية أكاديمية

Neurological Involvement in COVID-19 and Potential Mechanisms: A Review.

التفاصيل البيبلوغرافية
العنوان: Neurological Involvement in COVID-19 and Potential Mechanisms: A Review.
المؤلفون: Aghagoli G; Warren Alpert Medical School of Brown University, Providence, RI, USA. ghazal_aghagoli@brown.edu., Gallo Marin B; Warren Alpert Medical School of Brown University, Providence, RI, USA., Katchur NJ; Robert Wood Johnson Medical School, Piscataway, NJ, USA., Chaves-Sell F; Departamento de Neurología, Hospital Clínica Bíblica, San José, Costa Rica.; ILAE-Latin America, International League Against Epilepsy, Flower Mound, USA., Asaad WF; Warren Alpert Medical School of Brown University, Providence, RI, USA.; Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, USA.; Carney Institute for Brain Science, Brown University, Providence, RI, USA.; Department of Neuroscience, Brown University, Providence, RI, USA.; Norman Prince Neurosciences Institute at Lifespan, Providence, RI, USA.; Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA., Murphy SA; Harvard Medical School, Boston, MA, USA.; Division of Pediatric Critical Care, Department of Pediatrics, Massachusetts General Hospital, Boston, USA.
المصدر: Neurocritical care [Neurocrit Care] 2021 Jun; Vol. 34 (3), pp. 1062-1071.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Review
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 101156086 Publication Model: Print Cited Medium: Internet ISSN: 1556-0961 (Electronic) Linking ISSN: 15416933 NLM ISO Abbreviation: Neurocrit Care Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Totowa, NJ : Humana Press, c2004-
مواضيع طبية MeSH: COVID-19/*complications , Nervous System Diseases/*virology , SARS-CoV-2/*physiology, COVID-19/diagnosis ; COVID-19/therapy ; Humans ; Nervous System Diseases/diagnosis ; Nervous System Diseases/therapy
مستخلص: As the current understanding of COVID-19 continues to evolve, a synthesis of the literature on the neurological impact of this novel virus may help inform clinical management and highlight potentially important avenues of investigation. Additionally, understanding the potential mechanisms of neurologic injury may guide efforts to better detect and ameliorate these complications. In this review, we synthesize a range of clinical observations and initial case series describing potential neurologic manifestations of COVID-19 and place these observations in the context of coronavirus neuro-pathophysiology as it may relate to SARS-CoV-2 infection. Reported nervous system manifestations range from anosmia and ageusia, to cerebral hemorrhage and infarction. While the volume of COVID-19-related case studies continues to grow, previous work examining related viruses suggests potential mechanisms through which the novel coronavirus may impact the CNS and result in neurological complications. Namely, animal studies examining the SARS-CoV have implicated the angiotensin-converting-enzyme-2 receptor as a mediator of coronavirus-related neuronal damage and have shown that SARS-CoV can infect cerebrovascular endothelium and brain parenchyma, the latter predominantly in the medial temporal lobe, resulting in apoptosis and necrosis. Human postmortem brain studies indicate that human coronavirus variants and SARS-CoV can infect neurons and glia, implying SARS-CoV-2 may have similar neurovirulence. Additionally, studies have demonstrated an increase in cytokine serum levels as a result of SARS-CoV infection, consistent with the notion that cytokine overproduction and toxicity may be a relevant potential mechanism of neurologic injury, paralleling a known pathway of pulmonary injury. We also discuss evidence that suggests that SARS-CoV-2 may be a vasculotropic and neurotropic virus. Early reports suggest COVID-19 may be associated with severe neurologic complications, and several plausible mechanisms exist to account for these observations. A heightened awareness of the potential for neurologic involvement and further investigation into the relevant pathophysiology will be necessary to understand and ultimately mitigate SARS-CoV-2-associated neurologic injury.
References: Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 . (PMID: 10.1016/S0140-6736(20)30183-5319862647159299)
Wang D, Hu B, Hu C, et al. clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9. https://doi.org/10.1001/jama.2020.1585 . (PMID: 10.1001/jama.2020.1585320315707042881)
Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020. https://doi.org/10.1007/s00405-020-05965-1 . (PMID: 10.1007/s00405-020-05965-1332374767527148)
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2019. https://doi.org/10.1001/jamaneurol.2020.1127 . (PMID: 10.1001/jamaneurol.2020.1127)
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020. https://doi.org/10.1056/NEJMc2008597 . (PMID: 10.1056/NEJMc2008597324535177179967)
Kandermirli SG, Dogan L, Sarykaya ZT, et al. Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology. 2020. https://doi.org/10.1148/radiol.2020201697 . (PMID: 10.1148/radiol.2020201697)
Duong L, Xu P, Liu A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in downtown Los Angeles, early april 2020. Behav Immun. 2020. https://doi.org/10.1016/j.bbi.2020.04.024 . (PMID: 10.1016/j.bbi.2020.04.024)
Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020. https://doi.org/10.1148/radiol.2020201187 . (PMID: 10.1148/radiol.202020118732407256)
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis. 2020;94:55–8. https://doi.org/10.1016/j.ijid.2020.03.062 . (PMID: 10.1016/j.ijid.2020.03.062322517917195378)
Ye M, Ren Y, Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun. 2020. https://doi.org/10.1016/j.bbi.2020.04.017 . (PMID: 10.1016/j.bbi.2020.04.017331572587584518)
Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699–702. https://doi.org/10.1002/jmv.25915 . (PMID: 10.1002/jmv.2591532314810)
Pulles VG, Lutgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020. https://doi.org/10.1056/NEJMc2011400 . (PMID: 10.1056/NEJMc2011400)
Mizuguchi M. Acute necrotizing encephalopathy of childhood: a novel form of acute encephalopathy prevalent in Japan and Taiwan. Brain Dev. 1997;19(2):81–92. https://doi.org/10.1016/s0387-7604(96)00063-0 . (PMID: 10.1016/s0387-7604(96)00063-09105653)
Lee YJ, Hwang SK, Kwon S. Acute necrotizing encephalopathy in children: a long way to go. J Korean Med Sci. 2019. https://doi.org/10.3346/jkms.2019.34.e143 . (PMID: 10.3346/jkms.2019.34.e143318804157036344)
Wang GF, Li W, Li K. Acute encephalopathy and encephalitis caused by influenza virus infection. Curr Opin Neurol. 2010;23(3):305–11. https://doi.org/10.1097/wco.0b013e328338f6c9 . (PMID: 10.1097/wco.0b013e328338f6c920455276)
Toovey S. Influenza-associated central nervous system dysfunction: a literature review. Travel Med Infect Dis. 2008;6(3):114–24. https://doi.org/10.1016/j.tmaid.2008.03.003 . (PMID: 10.1016/j.tmaid.2008.03.00318486065)
Kansagra SM, Gallentine WB. Cytokine storm of acute necrotizing encephalopathy. Pediatr Neurol. 2011;45(6):400–2. https://doi.org/10.1016/j.pediatrneurol.2011.09.007 . (PMID: 10.1016/j.pediatrneurol.2011.09.00722115004)
Yoshida T, Tamura T, Nagai Y, et al. MRI gadolinium enhancement precedes neuroradiological findings in acute necrotizing encephalopathy. Brain Dev. 2013;35(10):921–4. https://doi.org/10.1016/j.braindev.2012.11.011 . (PMID: 10.1016/j.braindev.2012.11.01123265619)
Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;10(5):383–4. https://doi.org/10.1016/S1474-4422(20)30109-5 . (PMID: 10.1016/S1474-4422(20)30109-5)
Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020. https://doi.org/10.1056/nejmc2009191 . (PMID: 10.1056/nejmc2009191323020827182017)
Jacobs BC, Rothbarth PH, van der Meche FG, et al. The spectrum of antecedent infections in Guillain-Barre syndrome: a case-control study. Neurology. 1998;51(4):1110–5. https://doi.org/10.1212/wnl.51.4.1110 . (PMID: 10.1212/wnl.51.4.11109781538)
Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci. 2020;76:233–5. https://doi.org/10.1016/j.jocn.2020.04.062 . (PMID: 10.1016/j.jocn.2020.04.062323126287158817)
Gutierrez-Ortiz C, Mendez A, Rodrigo-Rey S, et al. Miller fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020. https://doi.org/10.1212/WNL.0000000000009619 . (PMID: 10.1212/WNL.000000000000961932868477)
Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa330 . (PMID: 10.1093/cid/ciaa33032407467)
Menni C, Valdes A, Freydin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 2020. https://doi.org/10.1038/s41591-020-0916-2 . (PMID: 10.1038/s41591-020-0916-2323938047751267)
Yan CH, Faraji F, Prajapati DP, Boone CE, DeConde AS. Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol. 2020. https://doi.org/10.1002/alr.22579 . (PMID: 10.1002/alr.22579332834497361898)
Brann D, Tsukahara T, Weinreb C, Logan DW. Non-neural expression of SARS-CoV-2 entry genes in the olfactory epithelium suggests mechanisms underlying anosmia in COVID-19 patients. BioRxiv. 2020. https://doi.org/10.1101/2020.03.25.009084 . (PMID: 10.1101/2020.03.25.009084)
Fodoulian L, Tuberosa J, Rossier D, et al. SARS-CoV-2 receptor and entry genes are expressed by sustentacular cells in the human olfactory neuroepithelium. BioRxiv. 2020. https://doi.org/10.1101/2020.03.35.013268 . (PMID: 10.1101/2020.03.35.013268)
Politi LS, Salsano E, Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol. 2019. https://doi.org/10.1001/jamaneurol.2020.2125 . (PMID: 10.1001/jamaneurol.2020.2125)
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13. https://doi.org/10.1016/S0140-6736(20)30211-7 . (PMID: 10.1016/S0140-6736(20)30211-7320071437135076)
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–7. https://doi.org/10.1111/jth.14768 . (PMID: 10.1111/jth.14768320732137166509)
Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–9. https://doi.org/10.1111/jth.14817 . (PMID: 10.1111/jth.1481732220112)
Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. https://doi.org/10.1016/j.thromres.2020.04.024 . (PMID: 10.1016/j.thromres.2020.04.024323537467177070)
Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020. https://doi.org/10.1111/jth.14830 . (PMID: 10.1111/jth.14830324796997283706)
Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020. https://doi.org/10.1016/j.thromres.2020.04.013 . (PMID: 10.1016/j.thromres.2020.04.013335351207832218)
Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020. https://doi.org/10.1007/s00134-020-06062-x . (PMID: 10.1007/s00134-020-06062-x331412457608308)
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62. https://doi.org/10.1016/S0140-6736(20)30566-3 . (PMID: 10.1016/S0140-6736(20)30566-3321710767270627)
Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood J. 2020. https://doi.org/10.1182/blood.2020006000 . (PMID: 10.1182/blood.2020006000)
Li Y, Wang M, Zhou Y, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective. Obs Study. 2020. https://doi.org/10.2139/ssrn.3550025 . (PMID: 10.2139/ssrn.3550025)
Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020. https://doi.org/10.1056/nejmc2007575 . (PMID: 10.1056/nejmc2007575330858747510944)
Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020. https://doi.org/10.1056/nejmc2009787 . (PMID: 10.1056/nejmc2009787323435047207073)
González-Pinto T, Luna-Rodríguez A, Moreno-Estébanez A, Agirre-Beitia G, Rodríguez-Antigüedad A, Ruiz-Lopez M. Emergency room neurology in times of COVID-19: malignant ischemic stroke and SARS-COV2 infection. Eur J Neurol. 2020. https://doi.org/10.1111/ene.14286 . (PMID: 10.1111/ene.14286323526187267343)
Harzallah I, Debliquis A, Drénou B. Lupus anticoagulant is frequent in patients with Covid-19. J Thromb Haemost. 2020. https://doi.org/10.1111/jth.14867 . (PMID: 10.1111/jth.14867326081097361771)
Santulli G, Morelli MB, Gambardella J. Is endothelial dysfunction the concealed cornerstone of COVID-19? The BMJ. 2020. https://doi.org/10.1136/bmj.m1091 . (PMID: 10.1136/bmj.m1091)
Marchandot B, Sattler L, Jesel L, et al. COVID-19 related coagulopathy: a distinct entity? J Clin Med. 2020. https://doi.org/10.3390/jcm9061651 . (PMID: 10.3390/jcm9061651333744877795726)
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–8. https://doi.org/10.1016/S0140-6736(20)30937-5 . (PMID: 10.1016/S0140-6736(20)30937-5323250267172722)
Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607–8. https://doi.org/10.1016/S0140-6736(20)31094-1 . (PMID: 10.1016/S0140-6736(20)31094-1323865657204765)
Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020;395(10239):1771–8. https://doi.org/10.1016/S0140-6736(20)31103-X . (PMID: 10.1016/S0140-6736(20)31103-X324107607220177)
Abdennour L, Zeghal C, Dème M, Puybasset L. Interaction cerveau-poumon. Annales Françaises d’Anesthésie et de Réanimation. 2012;31(6):101–7. https://doi.org/10.1016/j.annfar.2012.04.013 . (PMID: 10.1016/j.annfar.2012.04.013)
Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–24. https://doi.org/10.1084/jem.20050828 . (PMID: 10.1084/jem.20050828160435212213088)
Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of COVID-19. N Engl J Med. 2020. https://doi.org/10.1056/NEJMc2019373 . (PMID: 10.1056/NEJMc2019373332070947673303)
Lau K-K, Yu W-C, Chu C-M, Lau S-T, Sheng B, Yuen K-Y. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis. 2004;10(2):342–4. https://doi.org/10.3201/eid1002.030638 . (PMID: 10.3201/eid1002.030638150307093322928)
Stewart JN, Mounir S, Talbot PJ. Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology. 1992;191(1):502–5. https://doi.org/10.1016/0042-6822(92)90220-j . (PMID: 10.1016/0042-6822(92)90220-j1413524)
Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Is COVID-19 an endothelial disease? Clin Basic Evid. 2020. https://doi.org/10.20944/preprints202004.0204.v1 . (PMID: 10.20944/preprints202004.0204.v1)
Hung ECW, Chim SSC, Chan PKS, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 2003;49(12):2108–9. https://doi.org/10.1373/clinchem.2003.025437 . (PMID: 10.1373/clinchem.2003.025437146338967108123)
Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622–30. https://doi.org/10.1002/path.1560 . (PMID: 10.1002/path.1560151413767167761)
Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000;74(19):8913–21. https://doi.org/10.1128/jvi.74.19.8913-8921.2000 . (PMID: 10.1128/jvi.74.19.8913-8921.200010982334102086)
Edwards JA, Denis F, Talbot PJ. Activation of glial cells by human coronavirus OC43 infection. J Neuroimmunol. 2000;108(1–2):73–81. https://doi.org/10.1016/s0165-5728(00)00266-6 . (PMID: 10.1016/s0165-5728(00)00266-6109003407119868)
Stamatovic SM, Shakui P, Keep RF, et al. Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. J Cereb Blood Flow Metab. 2005;25(5):593–606. https://doi.org/10.1038/sj.jcbfm.9600055 . (PMID: 10.1038/sj.jcbfm.960005515689955)
Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol. 2004;173(6):4030–9. https://doi.org/10.4049/jimmunol.173.6.4030 . (PMID: 10.4049/jimmunol.173.6.403015356152)
Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221–36. https://doi.org/10.1080/22221751.2020.1719902 . (PMID: 10.1080/22221751.2020.1719902319870017067204)
Murray RS, Brown B, Brian D, Cabirac GF. Detection of coronavirus RNA and antigen in multiple sclerosis brain. Ann Neurol. 1992;31(5):525–33. https://doi.org/10.1002/ana.410310511 . (PMID: 10.1002/ana.41031051115960897159714)
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–75. https://doi.org/10.1128/JVI.00737-08 . (PMID: 10.1128/JVI.00737-08184957712493326)
Jacomy H, Fragoso G, Almazan G, Mushynski WE, Talbot PJ. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. 2006;349(2):335–46. https://doi.org/10.1016/j.virol.2006.01.049 . (PMID: 10.1016/j.virol.2006.01.04916527322)
Robertson J, Beaulieu J-M, Doroudchi MM, Durham HD, Julien J-P, Mushynski WE. Apoptotic death of neurons exhibiting peripherin aggregates is mediated by the proinflammatory cytokine tumor necrosis factor-α. J Cell Biol. 2001;155(2):217–26. https://doi.org/10.1083/jcb.200107058 . (PMID: 10.1083/jcb.200107058116044192198840)
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020. https://doi.org/10.1128/jvi.00127-20 . (PMID: 10.1128/jvi.00127-20332685197925198)
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020;63(3):457–60. https://doi.org/10.1007/s11427-020-1637-5 . (PMID: 10.1007/s11427-020-1637-5320092287089049)
Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905–13. https://doi.org/10.1016/j.cell.2020.04.004 . (PMID: 10.1016/j.cell.2020.04.004323338367181998)
Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R373–81. https://doi.org/10.1152/ajpregu.00292.2006 . (PMID: 10.1152/ajpregu.00292.200616946085)
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–7. https://doi.org/10.1002/path.1570 . (PMID: 10.1002/path.1570151413777167720)
de Moraes PL, Kangussu LM, Castro CH, Almeida AP, Santos RAS, Ferreira AJ. Vasodilator effect of angiotensin-(1-7) on vascular coronary bed of rats: role of Mas, ACE and ACE2. Protein Pept Lett. 2017;24(9):869–75. https://doi.org/10.2174/0929866524666170728154459 . (PMID: 10.2174/092986652466617072815445928758595)
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–9. https://doi.org/10.1038/nm1267 . (PMID: 10.1038/nm1267160070977095783)
Yang X-H, Deng W, Tong Z, et al. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med. 2007;57(5):450–9. (PMID: 17974127)
Huang K-J, Su I-J, Theron M, et al. An interferon-γ-related cytokine storm in SARS patients. J Med Virol. 2005;75(2):185–94. https://doi.org/10.1002/jmv.20255 . (PMID: 10.1002/jmv.2025515602737)
Nicholls JM, Poon LL, Lee KC, et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361(9371):1773–8. https://doi.org/10.1016/s0140-6736(03)13413-7 . (PMID: 10.1016/s0140-6736(03)13413-7127815367112492)
Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4. https://doi.org/10.1016/S0140-6736(20)30628-0 . (PMID: 10.1016/S0140-6736(20)30628-0321925787270045)
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–8. https://doi.org/10.1007/s00134-020-05991-x . (PMID: 10.1007/s00134-020-05991-x32125452)
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2019. https://doi.org/10.1001/jamainternmed.2020.0994 . (PMID: 10.1001/jamainternmed.2020.0994313808916990854)
Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020. https://doi.org/10.1016/j.jmii.2020.03.005 . (PMID: 10.1016/j.jmii.2020.03.005347563597832639)
Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393. https://doi.org/10.1016/j.clim.2020.108393 . (PMID: 10.1016/j.clim.2020.108393322224667102614)
Ma J, Xia P, Zhou Y, et al. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. Clin Immunol. 2020;214:108408. https://doi.org/10.1016/j.clim.2020.108408 . (PMID: 10.1016/j.clim.2020.108408322470387118642)
Pedersen SF, Ho Y-C. SARS-CoV-2: a storm is raging. J Clin Investig. 2020;130(5):2202–5. https://doi.org/10.1172/JCI137647 . (PMID: 10.1172/JCI137647322178347190904)
Wang S, Le TQ, Kurihara N, et al. Influenza virus-cytokine-protease cycle in the pathogenesis of vascular hyperpermeability in severe influenza. J Infect Dis. 2010;202(7):991–1001. https://doi.org/10.1086/656044 . (PMID: 10.1086/65604420731583)
Ouattara LA, Barin F, Barthez MA, et al. Novel human reovirus isolated from children with acute necrotizing encephalopathy. Emerg Infect Dis. 2011;17(8):1436–44. https://doi.org/10.3201/eid1708.101528 . (PMID: 10.3201/eid1708.101528218016213381585)
Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2(10):734–44. https://doi.org/10.1038/35094583 . (PMID: 10.1038/3509458311584311)
Yang Y, Shen C, Li J, et al. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. MedRxiv. 2020. https://doi.org/10.1101/2020.03.02.20029975 . (PMID: 10.1101/2020.03.02.20029975333982907709193)
معلومات مُعتمدة: R25 AI140490 United States AI NIAID NIH HHS; R25AI140490 National Institute of Allergy and Infectious Diseases
فهرسة مساهمة: Keywords: Cerebrovascular stroke; Coronavirus; Inflammation; Neurology
تواريخ الأحداث: Date Created: 20200715 Date Completed: 20210617 Latest Revision: 20230410
رمز التحديث: 20230411
مُعرف محوري في PubMed: PMC7358290
DOI: 10.1007/s12028-020-01049-4
PMID: 32661794
قاعدة البيانات: MEDLINE
الوصف
تدمد:1556-0961
DOI:10.1007/s12028-020-01049-4