دورية أكاديمية

Local and Geographic Factors Shape the Occupancy-Frequency Distribution of Freshwater Bacteria.

التفاصيل البيبلوغرافية
العنوان: Local and Geographic Factors Shape the Occupancy-Frequency Distribution of Freshwater Bacteria.
المؤلفون: Mateus-Barros E; Department of Hydrobiology, Laboratory of Microbial Processes and Biodiversity, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil. erickmbarros@ufscar.br.; Post Graduate Program in Ecology and Natural Resources (PPG-ERN), UFSCar, São Carlos, SP, 13565-905, Brazil. erickmbarros@ufscar.br., de Melo ML; Department of Hydrobiology, Laboratory of Microbial Processes and Biodiversity, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.; Département Des Sciences Biologiques, Université du Québec à Montréal, Montreal, Canada., Bagatini IL; Department of Botany, Laboratory of Phycology, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil., Caliman A; Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-900, Brazil., Sarmento H; Department of Hydrobiology, Laboratory of Microbial Processes and Biodiversity, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
المصدر: Microbial ecology [Microb Ecol] 2021 Jan; Vol. 81 (1), pp. 26-35. Date of Electronic Publication: 2020 Jul 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: United States NLM ID: 7500663 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-184X (Electronic) Linking ISSN: 00953628 NLM ISO Abbreviation: Microb Ecol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, Springer-Verlag.
مواضيع طبية MeSH: Bacterial Load*, Bacteria/*growth & development , Fresh Water/*microbiology , Microbial Consortia/*physiology, Bacteria/classification ; Bacteria/genetics ; Biodiversity ; Brazil ; Demography ; Ecosystem ; Geography ; RNA, Ribosomal, 16S/genetics
مستخلص: Species prevalence across the landscape is related to their local abundance, which is a result of deterministic and stochastic processes that select organisms capable of recolonizing sites where they were once extinct, a process known as the rescue effect. The occupancy-frequency distribution (OFD) describes these patterns and has been extensively used to understand organism's distribution but has been poorly tested on microorganisms. In order to test OFD on freshwater bacteria, we collected data from 60 shallow lakes distributed across a wide area in southeastern Brazil, to determine the bacterial operational taxonomic units (OTUs) that were present in all sites (core) and at only one site (satellite). Then, we analyzed the spatial abundance distributions of individual OTUs to understand the influence of local abundances on regional occupancy patterns. Finally, we tested the environmental factors that influenced occupancy and abundance. We found a significant bimodal OFD for freshwater bacteria using both OTUs (97% clustering) and amplicon sequence variants (ASVs, unique sequences), with 13 core OTUs and 1169 satellite OTUs, but only three core ASVs. Core organisms had a bimodal or gamma abundance distribution. The main driver of the core community was pH, while nutrients were key when the core community was excluded and the rest of the community (mild and satellite taxa) was considered. This study demonstrates the close relationship between local environmental conditions and the abundance and dispersion of microorganisms, which shapes their distribution across the landscape.
References: Gleason H (1929) The significance of Raunkiaer’s law of frequency. Ecology 10:406–408.
Papp L, Izsák J (1997) Bimodality in occurrence classes: a direct consequence of lognormal or logarithmic series distribution of abundances: a numerical experimentation. Oikos 79:191–194.
Soininen J, Heino J (2005) Relationships between local population persistence, local abundance and regional occupancy of species: distribution patterns of diatoms in boreal streams. J Biogeogr 32:1971–1978.
Tonkin JD, Arimoro FO, Haase P (2016) Exploring stream communities in a tropical biodiversity hotspot: biodiversity, regional occupancy, niche characteristics and environmental correlates. Biodivers Conserv 25:975–993.
Lindh MV, Sjostedt J, Ekstam B, Casini M, Lundin D, Hugerth LW, Hu YO, Andersson AF, Andersson A, Legrand C, Pinhassi J (2017) Metapopulation theory identifies biogeographical patterns among core and satellite marine bacteria scaling from tens to thousands of kilometers. Environ Microbiol 19:1222–1236. (PMID: 28028880)
Jeong SY, Choi JY, Kim TG (2020) Coordinated metacommunity assembly and spatial distribution of multiple microbial kingdoms within a lake. Microb Ecol 79:801–814.
Hanski I (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38:210–221.
Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240.
Gotelli NJ (1991) Metapopulation models: the rescue effect, the propagule rain, and the core-satellite hypothesis. Am Nat 138:768–776.
Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279.
Gaston KJ, Blackburn TM, Greenwood JJ, Gregory RD, Quinn RM, Lawton JH (2000) Abundance–occupancy relationships. J Appl Ecol 37:39–59.
Niño-García JP, Ruiz-González C, del Giorgio PA (2016) Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J 10:1755–1766. (PMID: 268493124918434)
Niño-García JP, Ruiz-González C, Del Giorgio PA (2016) Landscape-scale spatial abundance distributions discriminate core from random components of boreal lake bacterioplankton. Ecol Lett 19:1506–1515. (PMID: 27882701)
Niño-García JP, Ruiz-González C, Del Giorgio PA (2017) Exploring the ecological coherence between the spatial and temporal patterns of bacterioplankton in boreal lakes. Front Microbiol 8:636. (PMID: 284844315399088)
Baas Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. Van Stockum, Den Haag.
Barberán A, Casamayor EO, Fierer N (2014) The microbial contribution to macroecology. Front Microbiol 5:203. (PMID: 248295644017162)
Green JL, Bohannan BJ, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039–1043. (PMID: 18497288)
Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. (PMID: 22580365)
Horner-Devine MC, Bohannan BJ (2006) Unifying ecology to include all creatures great and small. Trends Ecol Evol 21:473. (PMID: 16860435)
Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112. (PMID: 16415926)
Heino J (2015) Deconstructing occupancy frequency distributions in stream insects: effects of body size and niche characteristics in different geographical regions. Ecol Entomol 40:491–499.
Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613.
Cammack WKL, Kalff J, Prairie YT, Smith EM (2004) Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnol Oceanogr 49:2034–2045.
Bertilsson S, Tranvik LJ (1998) Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr 43:885–895.
Cunha DGF, Calijuri MC, Lamparelli MC (2013) A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol Eng 60:126–134.
Marker A (1980) The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations. Arch Hydrobiol Ergebn Limnol 14:91–106.
Mush E (1980) Comparison of different methods for chlorophyll and phaeopigment determination. Arch Hydrobiol Beih 14:14–36.
Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346.
Mateus-Barros E, Meneghine AK, Bagatini IL, Fernandes CC, Kishi LT, Vieira AAH, Sarmento H (2019) Comparison of two DNA extraction methods widely used in aquatic microbial ecology. J Microbiol Methods 159:12–17. (PMID: 30738110)
Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579. (PMID: 214720163176514)
Logares R (2017) Ramalok/amplicon_processing: workflow for analysing MiSeq amplicons based on Uparse.
Logares R, Sunagawa S, Salazar G, Cornejo-Castillo FM, Ferrera I, Sarmento H, Hingamp P, Ogata H, de Vargas C, Lima-Mendez G, Raes J, Poulain J, Jaillon O, Wincker P, Kandels-Lewis S, Karsenti E, Bork P, Acinas SG (2014) Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol 16:2659–2671. (PMID: 24102695)
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. (PMID: 23955772)
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner F (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. (PMID: 23193283)
Yilmaz P, Parfrey L, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glockner F (2014) The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:D643–D648. (PMID: 24293649)
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. (PMID: 2721404727214047)
R. Core Team (2016) R: A Language and Environment for Statistical Computing. In: Editor (ed.)^(eds.) Book R: A Language and Environment for Statistical Computing, vol. R Foundation for Statistical Computing, City.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Vegan: community ecology package.
Mitchell-Olds T, Shaw RG (1987) Regression analysis of natural selection: statistical inference and biological interpretation. Evolution 41:1149–1161. (PMID: 28563617)
Ter Braak CJ, Looman CW (1986) Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65:3–11.
Maechler M (2016) Diptest: Hartiganś Dip Test Statistic for Unimodality - corrected. In: editor (ed.)^(eds.) Book diptest: Hartiganś dip test statistic for unimodality - corrected, vol., City.
Delignette-Muller ML, Dutang C (2015) fitdistrplus: an R package for fitting distributions. J Stat Softw 64:1–34.
Nychka D, Furrer R, Paige J, Sain S (2017) Fields: tools for spatial data (R package), version 8.3-6. In: editor (ed.)^(eds.) Book fields: tools for spatial data (R package), version 8.3-6, vol., City.
Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York.
Mehranvar L, Jackson DA (2001) History and taxonomy: their roles in the core-satellite hypothesis. Oecologia 127:131–142. (PMID: 28547164)
Ruiz-González C, Niño-García JP, del Giorgio PA (2015) Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol Lett 18:1198–1206. (PMID: 26306742)
Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, Polz MF (2004) Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430:551–554. (PMID: 15282603)
Schirmer M, Ijaz UZ, D'Amore R, Hall N, Sloan WT, Quince C (2015) Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res 43:e37. (PMID: 255862204381044)
Hosen JD, Febria CM, Crump BC, Palmer MA (2017) Watershed urbanization linked to differences in stream bacterial community composition. Front Microbiol 8:1452. (PMID: 288245825539594)
Mentes A, Szabo A, Somogyi B, Vajna B, Tugyi N, Csitari B, Voros L, Felfoldi T (2017) Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake. FEMS Microbiol Ecol 94:fix164.
de Melo ML, Bertilsson S, Amaral JHF, Barbosa PM, Forsberg BR, Sarmento H (2019) Flood pulse regulation of bacterioplankton community composition in an Amazonian floodplain lake. Freshw Biol 64:108–120.
Camara Dos Reis M, Lacativa Bagatini I, de Oliveira VL, Bonnet MP, da Motta MD, Sarmento H (2019) Spatial heterogeneity and hydrological fluctuations drive bacterioplankton community composition in an Amazon floodplain system. PLoS One 14:e0220695. (PMID: 313981996688838)
Golebiewski M, Calkiewicz J, Creer S, Piwosz K (2017) Tideless estuaries in brackish seas as possible freshwater-marine transition zones for bacteria: the case study of the Vistula river estuary. Environ Microbiol Rep 9:129–143. (PMID: 27935224)
Newton RJ, Jones SE, Helmus MR, McMahon KD (2007) Phylogenetic ecology of the freshwater Actinobacteria acI lineage. Appl Environ Microbiol 73:7169–7176. (PMID: 178273302168227)
Kim S, Kang I, Seo J-H, Cho J-C (2019) Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase. ISME J 13:2252–2263. (PMID: 310732146775976)
Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT, Mutschler J, Dwulit-Smith J, Chan L-K, Martinez-Garcia M (2014) Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J 8:2503–2516. (PMID: 250936374260696)
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev : MMBR 75:14–49. (PMID: 21372319)
Hahn MW, Jezberová J, Koll U, Saueressig-Beck T, Schmidt J (2016) Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. ISME J 10:1642–1655. (PMID: 269436214913878)
Jezbera J, Jezberová J, Brandt U, Hahn MW (2011) Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 13:922–931. (PMID: 212083563087241)
Salcher MM (2014) Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J Limnol 73:74–87.
Buck U, Grossart HP, Amann R, Pernthaler J (2009) Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ Microbiol 11:1854–1865. (PMID: 19320716)
Kasalický V, Jezbera J, Hahn MW, Šimek K (2013) The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One 8:e58209. (PMID: 235054693591437)
Hahn MW (2003) Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254. (PMID: 12957910194981)
Nelson WC, Stegen JC (2015) The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front Microbiol 6:713. (PMID: 262577094508563)
Lindström ES, Kamst-Van Agterveld MP, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71:8201–8206. (PMID: 163328031317352)
Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK (2018) Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J 12:1072–1083. (PMID: 295151695864241)
de Melo ML, Kothawala DN, Bertilsson S, Amaral JH, Forsberg B, Sarmento H (2020) Linking dissolved organic matter composition and bacterioplankton communities in an Amazon floodplain system. Limnol Oceanogr 65:63–76.
Morana C, Sarmento H, Descy J-P, Gasol JM, Borges AV, Bouillon S, Darchambeau F (2014) Production of dissolved organic matter by phytoplankton and its uptake by heterotrophic prokaryotes in large tropical lakes. Limnol Oceanogr 59:1364–1375.
Lynch MD, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229. (PMID: 25730701)
Pedrós-Alió C (2012) The rare bacterial biosphere. Annu Rev Mar Sci 4:449–466.
معلومات مُعتمدة: 2014/14139-3 São Paulo Research Foundation - FAPESP; 2011/50054-4 São Paulo Research Foundation - FAPESP; 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES); 309514/2017-7 National Council for Scientific and Technological Development - CNPq
فهرسة مساهمة: Keywords: Bimodal distribution; Core and satellite organisms; Diversity patterns; Microbial metacommunity
المشرفين على المادة: 0 (RNA, Ribosomal, 16S)
تواريخ الأحداث: Date Created: 20200725 Date Completed: 20210716 Latest Revision: 20210716
رمز التحديث: 20221213
DOI: 10.1007/s00248-020-01560-3
PMID: 32705311
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-184X
DOI:10.1007/s00248-020-01560-3