دورية أكاديمية

Functionalisation of a heat-derived and bio-inert albumin hydrogel with extracellular matrix by air plasma treatment.

التفاصيل البيبلوغرافية
العنوان: Functionalisation of a heat-derived and bio-inert albumin hydrogel with extracellular matrix by air plasma treatment.
المؤلفون: Ong J; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK. jo401@cam.ac.uk.; East of England Gastroenterology Speciality Training Program, Fulbourn, Cambridge, CB21 5XB, UK. jo401@cam.ac.uk.; Department of Medicine, National University of Singapore, Kent Ridge Road, Singapore, 119228, Singapore. jo401@cam.ac.uk., Zhao J; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.; Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore., Levy GK; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK., Macdonald J; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK., Justin AW; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK., Markaki AE; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK. am253@cam.ac.uk.
المصدر: Scientific reports [Sci Rep] 2020 Jul 24; Vol. 10 (1), pp. 12429. Date of Electronic Publication: 2020 Jul 24.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Plasma Gases*, Biocompatible Materials/*chemistry , Hydrogels/*chemistry , Serum Albumin, Human/*chemistry , Tissue Engineering/*methods, Biocompatible Materials/toxicity ; Cell Line ; Cell Proliferation/drug effects ; Extracellular Matrix Proteins/chemistry ; Extracellular Matrix Proteins/toxicity ; Extracellular Matrix Proteins/ultrastructure ; Hot Temperature ; Humans ; Hydrogels/toxicity ; Materials Testing ; Microscopy, Electron, Scanning ; Osteoblasts ; Serum Albumin, Human/toxicity ; Serum Albumin, Human/ultrastructure ; Sodium Chloride/chemistry ; Surface Properties
مستخلص: Albumin-based hydrogels are increasingly attractive in tissue engineering because they provide a xeno-free, biocompatible and potentially patient-specific platform for tissue engineering and drug delivery. The majority of research on albumin hydrogels has focused on bovine serum albumin (BSA), leaving human serum albumin (HSA) comparatively understudied. Different gelation methods are usually employed for HSA and BSA, and variations in the amino acid sequences of HSA and BSA exist; these account for differences in the hydrogel properties. Heat-induced gelation of aqueous HSA is the easiest method of synthesizing HSA hydrogels however hydrogel opacity and poor cell attachment limit their usefulness in downstream applications. Here, a solution to this problem is presented. Stable and translucent HSA hydrogels were created by controlled thermal gelation and the addition of sodium chloride. The resulting bio-inert hydrogel was then subjected to air plasma treatment which functionalised its surface, enabling the attachment of basement membrane matrix (Geltrex). In vitro survival and proliferation studies of foetal human osteoblasts subsequently demonstrated good biocompatibility of functionalised albumin hydrogels compared to untreated samples. Thus, air plasma treatment enables functionalisation of inert heat-derived HSA hydrogels with extracellular matrix proteins and these may be used as a xeno-free platform for biomedical research or cell therapy.
References: Lee, E. S. & Youn, Y. S. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. J. Pharmaceut. Investig. 46, 305–315. https://doi.org/10.1007/s40005-016-0250-3 (2016). (PMID: 10.1007/s40005-016-0250-3)
Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132, 171–183. https://doi.org/10.1016/j.jconrel.2008.05.010 (2008). (PMID: 10.1016/j.jconrel.2008.05.01018582981)
Elsadek, B. & Kratz, F. Impact of albumin on drug delivery–new applications on the horizon. J Control Release 157, 4–28. https://doi.org/10.1016/j.jconrel.2011.09.069 (2012). (PMID: 10.1016/j.jconrel.2011.09.06921959118)
Ong, J., Zhao, J., Justin, A. W. & Markaki, A. E. Albumin-based hydrogels for regenerative engineering and cell transplantation. Biotechnol Bioeng 116, 3457–3468. https://doi.org/10.1002/bit.27167 (2019). (PMID: 10.1002/bit.27167315204156899591)
Katarivas Levy, G., Ong, J., Birch, M. A., Justin, A. W. & Markaki, A. E. Albumin-enriched fibrin hydrogel embedded in active ferromagnetic networks improves osteoblast differentiation and vascular self-organisation. Polymers (Basel) 11, 1743. https://doi.org/10.3390/polym11111743 (2019). (PMID: 10.3390/polym11111743)
Baler, K., Michael, R., Szleifer, I. & Ameer, G. A. Albumin hydrogels formed by electrostatically triggered self-assembly and their drug delivery capability. Biomacromol 15, 3625–3633. https://doi.org/10.1021/bm500883h (2014). (PMID: 10.1021/bm500883h)
He, X. M. & Carter, D. C. Atomic structure and chemistry of human serum albumin. Nature 358, 209–215. https://doi.org/10.1038/358209a0 (1992). (PMID: 10.1038/358209a01630489)
Carter, D. C. & Ho, J. X. Structure of serum albumin. Adv. Protein. Chem 45, 153–203 (1994). (PMID: 10.1016/S0065-3233(08)60640-3)
Arabi, S. H. et al. Serum albumin hydrogels in broad pH and temperature ranges: characterization of their self-assembled structures and nanoscopic and macroscopic properties. Biomater. Sci. 6, 478–492. https://doi.org/10.1039/c7bm00820a (2018). (PMID: 10.1039/c7bm00820a29446432)
Chen, J. et al. Preparation, characterization and application of a protein hydrogel with rapid self-healing and unique autofluoresent multi-functionalities. J. Biomed. Mater. Res. A 107, 81–91. https://doi.org/10.1002/jbm.a.36534 (2019). (PMID: 10.1002/jbm.a.3653430408320)
Zhang, P., Sun, F., Liu, S. & Jiang, S. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J Control Release 244, 184–193. https://doi.org/10.1016/j.jconrel.2016.06.040 (2016). (PMID: 10.1016/j.jconrel.2016.06.040273698645747248)
Murata, M., Tani, F., Higasa, T., Kitabatake, N. & Doi, E. Heat-induced transparent gel formation of bovine serum albumin. Biosci. Biotechnol. Biochem. 57, 43–46. https://doi.org/10.1271/bbb.57.43 (1993). (PMID: 10.1271/bbb.57.4327316871)
Desmet, T. et al. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromol 10, 2351–2378. https://doi.org/10.1021/bm900186s (2009). (PMID: 10.1021/bm900186s)
Li, Y., Kim, J. H., Choi, E. H. & Han, I. Promotion of osteogenic differentiation by non-thermal biocompatible plasma treated chitosan scaffold. Sci. Rep. 9, 3712. https://doi.org/10.1038/s41598-019-40371-6 (2019). (PMID: 10.1038/s41598-019-40371-6308425786403376)
Choi, Y.-R. et al. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation. Thin Solid Films 547, 235–240. https://doi.org/10.1016/j.tsf.2013.02.038 (2013). (PMID: 10.1016/j.tsf.2013.02.038)
Hsu, S. H., Lin, C. H. & Tseng, C. S. Air plasma treated chitosan fibers-stacked scaffolds. Biofabrication 4, 015002. https://doi.org/10.1088/1758-5082/4/1/015002 (2012). (PMID: 10.1088/1758-5082/4/1/01500222257983)
Ko, Y. M., Choi, D. Y., Jung, S. C. & Kim, B. H. Characteristics of plasma treated electrospun polycaprolactone (PCL) nanofiber scaffold for bone tissue engineering. J. Nanosci. Nanotechnol. 15, 192–195. https://doi.org/10.1166/jnn.2015.8372 (2015). (PMID: 10.1166/jnn.2015.837226328328)
Moriguchi, Y. et al. Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration. PLoS ONE 13, e0194303. https://doi.org/10.1371/journal.pone.0194303 (2018). (PMID: 10.1371/journal.pone.0194303295384575851618)
Zhang, Q. et al. Air-plasma treatment promotes bone-like nano-hydroxylapatite formation on protein films for enhanced in vivo osteogenesis. Biomater Sci 7, 2326–2334. https://doi.org/10.1039/c9bm00020h (2019). (PMID: 10.1039/c9bm00020h309079166555639)
Lee, C. M., Yang, S. W., Jung, S. C. & Kim, B. H. Oxygen plasma treatment on 3D-printed chitosan/gelatin/hydroxyapatite scaffolds for bone tissue engineering. J. Nanosci. Nanotechnol. 17, 2747–2750. https://doi.org/10.1166/jnn.2017.13337 (2017). (PMID: 10.1166/jnn.2017.1333729664596)
Kinner, B. & Spector, M. Expression of smooth muscle actin in osteoblasts in human bone. J. Orthop. Res. 20, 622–632. https://doi.org/10.1016/S0736-0266(01)00145-0 (2002). (PMID: 10.1016/S0736-0266(01)00145-012038640)
Boraas, L. C., Guidry, J. B., Pineda, E. T. & Ahsan, T. Cytoskeletal expression and remodeling in pluripotent stem cells. PLoS ONE 11, e0145084. https://doi.org/10.1371/journal.pone.0145084 (2016). (PMID: 10.1371/journal.pone.0145084267711794714815)
Woodruff, M. A., Jones, P., Farrar, D., Grant, D. M. & Scotchford, C. A. Human osteoblast cell spreading and vinculin expression upon biomaterial surfaces. J. Mol. Histol. 38, 491–499. https://doi.org/10.1007/s10735-007-9142-1 (2007). (PMID: 10.1007/s10735-007-9142-117849222)
Van Tam, J. K. et al. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness. Sci. Technol. Adv. Mater. 13, 064205. https://doi.org/10.1088/1468-6996/13/6/064205 (2012). (PMID: 10.1088/1468-6996/13/6/064205278775325099765)
Kocgozlu, L. et al. Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription in epithelial cells. J. Cell. Sci. 123, 29–39. https://doi.org/10.1242/jcs.053520 (2010). (PMID: 10.1242/jcs.05352020016064)
Gallego, L., Junquera, L., Meana, A., Garcia, E. & Garcia, V. Three-dimensional culture of mandibular human osteoblasts on a novel albumin scaffold: growth, proliferation, and differentiation potential in vitro. Int. J. Oral Maxillofac. Implants 25, 699–705 (2010). (PMID: 20657864)
Ma, X. et al. A biocompatible and biodegradable protein hydrogel with green and red autofluorescence: preparation, characterization and in vivo biodegradation tracking and modeling. Sci. Rep. 6, 19370. https://doi.org/10.1038/srep19370 (2016). (PMID: 10.1038/srep19370268139164728389)
Borzova, V. A. et al. Kinetics of thermal denaturation and aggregation of bovine serum albumin. PLoS ONE 11, e0153495. https://doi.org/10.1371/journal.pone.0153495 (2016). (PMID: 10.1371/journal.pone.0153495271012814839713)
Molodenskiy, D. et al. Thermally induced conformational changes and protein-protein interactions of bovine serum albumin in aqueous solution under different pH and ionic strengths as revealed by SAXS measurements. Phys. Chem. Chem. Phys. 19, 17143–17155. https://doi.org/10.1039/c6cp08809k (2017). (PMID: 10.1039/c6cp08809k28636681)
Barone, G. et al. Thermal denaturation of bovine serum albumin and its oligomers and derivativespH dependence. J. Therm. Anal. 45, 1255–1264. https://doi.org/10.1007/bf02547420 (1995). (PMID: 10.1007/bf02547420)
Matsudomi, N., Rector, D. & Kinsella, J. E. Gelation of bovine serum albumin and β-lactoglobulin; effects of pH, salts and thiol reagents. Food Chem. 40, 55–69. https://doi.org/10.1016/0308-8146(91)90019-k (1991). (PMID: 10.1016/0308-8146(91)90019-k)
Shirahama, H. et al. Fabrication of inverted colloidal crystal poly(ethylene glycol) scaffold: a three-dimensional cell culture platform for liver tissue engineering. J. Vis. Exp. https://doi.org/10.3791/54331 (2016). (PMID: 10.3791/54331276845305091954)
Ng, S. S. et al. Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold. Biomaterials 182, 299–311. https://doi.org/10.1016/j.biomaterials.2018.07.043 (2018). (PMID: 10.1016/j.biomaterials.2018.07.043301492626131727)
Wang, Y. et al. ECM proteins in a microporous scaffold influence hepatocyte morphology, function, and gene expression. Sci Rep 6, 37427. https://doi.org/10.1038/srep37427 (2016). (PMID: 10.1038/srep37427278971675126637)
Fung, J. et al. Defining normal liver stiffness range in a normal healthy Chinese population without liver disease. PLoS ONE 8, e85067. https://doi.org/10.1371/journal.pone.0085067 (2013). (PMID: 10.1371/journal.pone.0085067243864463873442)
Colombo, S. et al. Normal liver stiffness and its determinants in healthy blood donors. Dig Liver Dis 43, 231–236. https://doi.org/10.1016/j.dld.2010.07.008 (2011). (PMID: 10.1016/j.dld.2010.07.00820817625)
Barr, R. G. et al. Elastography assessment of liver fibrosis: society of radiologists in ultrasound consensus conference statement. Radiology 276, 845–861. https://doi.org/10.1148/radiol.2015150619 (2015). (PMID: 10.1148/radiol.201515061926079489)
Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370. https://doi.org/10.1038/s41578-019-0169-1 (2020). (PMID: 10.1038/s41578-019-0169-1)
Amdursky, N. et al. Elastic serum-albumin based hydrogels: mechanism of formation and application in cardiac tissue engineering. J. Mater. Chem. B 6, 5604–5612. https://doi.org/10.1039/C8TB01014E (2018). (PMID: 10.1039/C8TB01014E302836326166857)
Fleischer, S. et al. Albumin fiber scaffolds for engineering functional cardiac tissues. Biotechnol. Bioeng. 111, 1246–1257. https://doi.org/10.1002/bit.25185 (2014). (PMID: 10.1002/bit.2518524420414)
Humphrey, E. J. et al. Abstract 342: Serum albumin hydrogels alter excitation-contraction coupling in neonatal rat myocytes and human induced pluripotent stem cell derived cardiomyocytes. Circ. Res. 121, A342. https://doi.org/10.1161/res.121.suppl_1.342 (2017). (PMID: 10.1161/res.121.suppl_1.342)
Uehara, N. et al. Osteoblast-derived Laminin-332 is a novel negative regulator of osteoclastogenesis in bone microenvironments. Lab. Invest. 97, 1235–1244. https://doi.org/10.1038/labinvest.2017.55 (2017). (PMID: 10.1038/labinvest.2017.5528581488)
Jiang, Z. et al. Laminin-521 promotes rat bone marrow mesenchymal stem cell sheet formation on light-induced cell sheet technology. Biomed Res Int 2017, 9474573. https://doi.org/10.1155/2017/9474573 (2017). (PMID: 10.1155/2017/9474573281641295253502)
Mittag, F. et al. Laminin-5 and type I collagen promote adhesion and osteogenic differentiation of animal serum-free expanded human mesenchymal stromal cells. Orthop Rev 4, e36. https://doi.org/10.4081/or.2012.e36 (2012). (PMID: 10.4081/or.2012.e36)
van Leeuwen, J. P. T. M., van der Eerden, B. C. J., van de Peppel, J., Stein, G. S. & Lian, J. B. in Osteoporosis 161–207 (2013).
Komori, T. Roles of Runx2 in skeletal development. Adv. Exp. Med. Biol. 962, 83–93. https://doi.org/10.1007/978-981-10-3233-2_6 (2017). (PMID: 10.1007/978-981-10-3233-2_628299652)
Czekanska, E. M., Stoddart, M. J., Richards, R. G. & Hayes, J. S. In search of an osteoblast cell model for in vitro research. Eur. Cells Mater. 24, 1–17. https://doi.org/10.22203/eCM.v024a01 (2012). (PMID: 10.22203/eCM.v024a01)
Rutkovskiy, A., Stenslokken, K. O. & Vaage, I. J. Osteoblast differentiation at a glance. Med. Sci. Monit. Basic Res. 22, 95–106. https://doi.org/10.12659/msmbr.901142 (2016). (PMID: 10.12659/msmbr.901142276675705040224)
Stein, G. S. et al. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23, 4315–4329. https://doi.org/10.1038/sj.onc.1207676 (2004). (PMID: 10.1038/sj.onc.120767615156188)
Komori, T. Regulation of bone development and maintenance by Runx2. Front. Biosci. 13, 898–903. https://doi.org/10.2741/2730 (2008). (PMID: 10.2741/273017981598)
Varley, M. C. et al. Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states. Acta Biomater 33, 166–175. https://doi.org/10.1016/j.actbio.2016.01.041 (2016). (PMID: 10.1016/j.actbio.2016.01.04126827778)
Katarivas Levy, G., Birch, M. A., Brooks, R. A., Neelakantan, S. & Markaki, A. E. Stimulation of human osteoblast differentiation in magneto-mechanically actuated ferromagnetic fiber networks. J. Clin. Med. 8, 1. https://doi.org/10.3390/jcm8101522 (2019). (PMID: 10.3390/jcm8101522)
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001). (PMID: 10.1006/meth.2001.12621184660911846609)
المشرفين على المادة: 0 (Biocompatible Materials)
0 (Extracellular Matrix Proteins)
0 (Hydrogels)
0 (Plasma Gases)
451W47IQ8X (Sodium Chloride)
ZIF514RVZR (Serum Albumin, Human)
تواريخ الأحداث: Date Created: 20200726 Date Completed: 20201221 Latest Revision: 20210724
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7382478
DOI: 10.1038/s41598-020-69301-7
PMID: 32709918
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-020-69301-7