دورية أكاديمية

RNA-sequencing analysis revealed genes associated drought stress responses of different durations in hexaploid sweet potato.

التفاصيل البيبلوغرافية
العنوان: RNA-sequencing analysis revealed genes associated drought stress responses of different durations in hexaploid sweet potato.
المؤلفون: Arisha MH; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato/Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China. mohhamedarisha@gmail.com.; Department of Horticulture, Faculty of Agriculture, Zagazig University, Sharkia, 44511, Egypt. mohhamedarisha@gmail.com., Ahmad MQ; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato/Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China.; Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, 60000, Pakistan., Tang W; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato/Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China., Liu Y; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato/Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China., Yan H; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato/Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China., Kou M; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato/Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China., Wang X; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato/Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China., Zhang Y; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato/Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China., Li Q; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato/Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China. instrong@163.com.
المصدر: Scientific reports [Sci Rep] 2020 Jul 28; Vol. 10 (1), pp. 12573. Date of Electronic Publication: 2020 Jul 28.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Polyploidy*, Ipomoea batatas/*physiology , Plant Proteins/*genetics , RNA, Plant/*genetics, Droughts ; Gene Expression Regulation, Plant ; Ipomoea batatas/genetics ; Plant Proteins/metabolism ; RNA, Plant/metabolism ; Sequence Analysis, RNA ; Stress, Physiological ; Transcriptome
مستخلص: Purple-fleshed sweet potato (PFSP) is an important food crop, as it is a rich source of nutrients and anthocyanin pigments. Drought has become a major threat to sustainable sweetpotato production, resulting in huge yield losses. Therefore, the present study was conducted to identify drought stress-responsive genes using next-generation (NGS) and third-generation sequencing (TGS) techniques. Five cDNA libraries were constructed from seedling leaf segments treated with a 30% solution of polyethylene glycol (PEG-6000) for 0, 1, 6, 12, and 48 h for second-generation sequencing. Leaf samples taken from upper third of sweet potato seedlings after 1, 6, 12, and 48 h of drought stress were used for the construction of cDNA libraries for third-generation sequencing; however, leaf samples from untreated plants were collected as controls. A total of 184,259,679 clean reads were obtained using second and third-generation sequencing and then assembled into 17,508 unigenes with an average length of 1,783 base pairs. Out of 17,508 unigenes, 642 (3.6%) unigenes failed to hit any homologs in any databases, which might be considered novel genes. A total of 2, 920, 1578, and 2,418 up-regulated unigenes and 3,834, 2,131, and 3,337 down-regulated unigenes from 1 h, 6 h, 12 h, and 48 h library were identified, respectively in drought stress versus control. In addition, after 6, 12, and 48 h of drought stress, 540 up-regulated unigenes, 486 down-regulated unigenes and 414 significantly differentially expressed unigenes were detected. It was found that several gene families including Basic Helix-loop-helix (bHLH), basic leucine zipper (bZIP), Cystein2/Histidine2 (C2H2), C3H, Ethylene-responsive transcription factor (ERF), Homo domain-leucine zipper (HD-ZIP), MYB, NAC (NAM, ATAF1/2, and CUC2), Thiol specific antioxidant and WRKY showed responses to drought stress. In total, 17,472 simple sequence repeats and 510,617 single nucleotide polymorphisms were identified based on transcriptome sequencing of the PFSP. About 96.55% of the obtained sequences are not available online in sweet potato genomics resources. Therefore, it will enrich annotated sweet potato gene sequences and enhance understanding of the mechanisms of drought tolerance through genetic manipulation. Moreover, it represents a sequence resource for genetic and genomic studies of sweet potato.
References: Lim, T. Edible Medicinal and Non-medicinal Plants 92–171 (Springer, Berlin, 2016).
Davis, D. R., Epp, M. D. & Riordan, H. D. Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J. Am. Coll. Nutr. 23, 669–682 (2004). (PMID: 15637215)
Fu, Y. et al. Variation laws of anthocyanin content in roots and their relationships with major economic traits in purple-fleshed sweetpotato [Ipomoea batatas (L.) Lam]. Agric. Sci. China 7, 32–40 (2008).
Latham, M. C. Human Nutrition in the Developing World (Food & Agriculture Organiation, Rome, 1997).
Gajanayake, B., Reddy, K. R., Shankle, M. W. & Arancibia, R. A. Growth, developmental, and physiological responses of two sweetpotato (Ipomoea batatas L. [Lam]) cultivars to early season soil moisture deficit. Sci. Horticult. 168, 218–228 (2014).
Lin, K.-H. et al. The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Bot. Stud. 47, 417–426 (2006).
Gurmu, F., Hussein, S. & Laing, M. Self-and cross-incompatibilities in sweetpotato and their implications on breeding. Aust. J. Crop Sci. 7, 2074 (2013).
Michael, T. P. & Jackson, S. The first 50 plant genomes. Plant Genome 6(2), 1–7 (2013).
Tao, X. et al. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS ONE 7, e36234 (2012). (PMID: 225583973338685)
Cao, Q. et al. Transcriptome sequencing of the sweet potato progenitor (Ipomoea Trifida (H.B.K.) G. Don.) and discovery of drought tolerance genes. Trop. Plant Biol. 9, 63–72 (2016).
Schafleitner, R. et al. A sweetpotato gene index established by de novo assembly of pyrosequencing and Sanger sequences and mining for gene-based microsatellite markers. BMC Genomics 11, 604–604 (2010). (PMID: 209777493017860)
Wang, Z. et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics 11, 726–726 (2010). (PMID: 211828003016421)
Xie, F. et al. novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome. Planta 236, 101–113 (2012). (PMID: 22270559)
Tao, X. et al. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS ONE 7, e36234 (2012). (PMID: 225583973338685)
Firon, N. et al. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 14, 460–460 (2013). (PMID: 238345073716973)
Lin, Y. et al. Transcriptome profiling and digital gene expression analysis of sweet potato for the identification of putative genes involved in the defense response against Fusarium oxysporum f. sp. batatas. PLoS ONE 12, e0187838. https://doi.org/10.1371/journal.pone.0187838 (2017). (PMID: 10.1371/journal.pone.0187838291318305683638)
Li, R. et al. De Novo transcriptome sequencing of the orange-fleshed sweet potato and analysis of differentially expressed genes related to carotenoid biosynthesis. Comput. Funct. Genomics 2015, 843802–843812 (2015).
Hong, Z. et al. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. J. Integr. Agric. 18, 9–23 (2019).
Roullier, C., Kambouo, R., Paofa, J., Mckey, D. & Lebot, V. On the origin of sweet potato (Ipomoea batatas (L.) Lam.) genetic diversity in New Guinea, a secondary centre of diversity. Heredity 110, 594–604 (2013). (PMID: 235319823656641)
Kukurba, K. R. & Montgomery, S. B. RNA sequencing and analysis. Cold Spring Harbor Protocols 2015, pdb. top084970 (2015).
Wong, L., Pearson, H., Fletcher, A., Marquis, C. P. & Mahler, S. Comparison of the efficiency of moloney murine leukaemia virus (M-MuLV) reverse transcriptase, RNase H-M-MuLV reverse transcriptase and avian myeloblastoma leukaemia virus (AMV) reverse transcriptase for the amplification of human immunoglobulin genes. Biotechnol. Tech. 12, 485–489 (1998).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). (PMID: 225065993342519)
Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998). (PMID: 9521921)
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644 (2011). (PMID: 215724403571712)
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protocol 8, 1494 (2013).
Götz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008). (PMID: 184456322425479)
Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010). (PMID: 201325352872874)
Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484 (2007). (PMID: 180774712238879)
Mao, X., Cai, T., Olyarchuk, J. G. & Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21, 3787–3793 (2005). (PMID: 15817693)
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 100, 9440–9445 (2003). (PMID: 12883005)
Bhadauria, V. Next-generation Sequencing and Bioinformatics for Plant Science (Caister Academic Press, Norfolk, 2017).
de Carvalho Oliveira, R. A. et al. Analysis of arabidopsis thaliana redox gene network indicates evolutionary expansion of class III peroxidase in plants. Sci. Rep. 9, 15741. https://doi.org/10.1038/s41598-019-52299-y (2019). (PMID: 10.1038/s41598-019-52299-y)
Botella, M. A., Rosado, A., Bressan, R. A. & Hasegawa, P. M. Plant adaptive responses to salinity stress. Plant Abiotic Stress 21, 37–70 (2005).
Loebenstein, G. & Thottappilly, G. The Sweetpotato (Springer, Netherlands, 2009).
Mittler, R., Vanderauwera, S., Gollery, M. & Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490–498 (2004). (PMID: 15465684)
Sachiko, I., Kenta, S. & Hideki, H. Challenges to genome sequence dissection in sweetpotato. Breed. Sci. 67, 35–40 (2017).
Osakabe, Y., Osakabe, K., Shinozaki, K. & Tran, L. P. Response of plants to water stress. Front. Plant Sci. 5, 86–86 (2014). (PMID: 246599933952189)
Xiong, L., Schumaker, K. S. & Zhu, J. Cell signaling during cold, drought, and salt stress. Plant Cell 14, 165–183 (2002).
Dill, K. A., Ozkan, S. B., Shell, M. S. & Weikl, T. R. The protein folding problem. Ann. Rev. Biophys. 37, 289–316 (2008).
Kubota, F. The effects of drought stress and leaf ageing on leaf photosynthesis and electron transport in photosystem 2 in sweet potato (Ipomoea batatas Lam.) cultivars. Photosynthetica 41, 253–258 (2003).
Van Heerden, P. D. R. & Laurie, R. Effects of prolonged restriction in water supply on photosynthesis, shoot development and storage root yield in sweet potato. Physiol. Plant. 134, 99–109. https://doi.org/10.1111/j.1399-3054.2008.01111.x (2008). (PMID: 10.1111/j.1399-3054.2008.01111.x18494734)
Ciarmiello, L. F., Woodrow, P., Fuggi, A., Pontecorvo, G. & Carillo, P. Plant genes for abiotic stress. in Abiotic Stress in Plants–Mechanisms and Adaptations. 283–308 (2011).
McKinney, M. K. & Cravatt, B. F. Structure and function of fatty acid amide hydrolase. Annu. Rev. Biochem. 74, 411–432 (2005). (PMID: 15952893)
Chen, J.-G. & Ellis, B. E. GCR2 is a new member of the eukaryotic lanthionine synthetase component C-like protein family. Plant Signal. Behav. 3, 307–310 (2008). (PMID: 198416542634266)
Khater, S. & Mohanty, D. Genome-wide search for eliminylating domains reveals novel function for BLES03-like proteins. Genome Biol. Evol. 6, 2017–2033 (2014). (PMID: 250629154159009)
Pirona, R. et al. Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol. 13, 166 (2013). (PMID: 241487863854093)
Goel, P., Bhuria, M., Sinha, R., Sharma, T. R. & Singh, A. K. Molecular Approaches in Plant Biology and Environmental Challenges 7–50 (Springer, Berlin, 2019).
Muthusamy, S. K., Dalal, M., Chinnusamy, V. & Bansal, K. C. Differential regulation of genes coding for organelle and cytosolic ClpATPases under biotic and abiotic stresses in wheat. Front. Plant Sci. 7, 929 (2016). (PMID: 274461584923199)
Zheng, B., MacDonald, T. M., Sutinen, S., Hurry, V. & Clarke, A. K. A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana. Planta 224, 1103–1115 (2006). (PMID: 16705403)
Lim, J., Lim, C. W. & Lee, S. C. Functional analysis of pepper F-box protein CaDIF1 and its interacting partner CaDIS1: modulation of ABA signalling and drought stress response. Front. Plant Sci. 10, 1365 (2019). (PMID: 317370026831560)
Fan, Y., Yang, W., Yan, Q., Chen, C. & Li, J. Genome-wide identification and expression analysis of the protease inhibitor gene families in tomato. Genes 11, 1 (2020).
Yao, X., Xiong, W., Ye, T. & Wu, Y. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. J. Exp. Bot. 63, 2579–2593 (2012). (PMID: 222681473346222)
Srinivasan, T., Kumar, K. R. R. & Kirti, P. B. Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol. 50, 541–553 (2009). (PMID: 19179349)
Watanabe, S. et al. The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. Plant Cell Environ. 37, 1022–1036 (2014). (PMID: 24182190)
Hossain, M. A., Wani, S. H., Bhattacharjee, S., Burritt, D. J. & Tran, L.-S.P. Drought Stress Tolerance in Plants Vol. 2 (Springer, Cham, 2016).
Kishor, K., Polavarapu, B., Hima Kumari, P., Sunita, M. & Sreenivasulu, N. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front. Plant Sci. 6, 544 (2015).
Hu, X. et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul. 60, 225–235 (2010).
Hýsková, V. D., Miedzińska, L., Dobrá, J., Vankova, R. & Ryšlavá, H. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress. J. Plant Physiol 171, 19–25 (2014).
Park, S.-Y. et al. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19, 1649–1664 (2007). (PMID: 175135041913741)
Sallam, A., Alqudah, A. M., Dawood, M. F., Baenziger, P. S. & Börner, A. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int. J. Mol. Sci. 20, 3137 (2019). (PMID: 6651786)
Zhu, J.-K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016). (PMID: 277165055104190)
Pereira, W. J., Melo, A. T. D. O., Coelho, A. S. G., Rodrigues, F. A., Mamidi, S., Alencar, S. A. D., Lanna, A. C., Valdisser, P. A. M. R., Brondani, C., & Nascimento-Júnior, I. R. D. Genome-wide analysis of the transcriptional response to drought stress in root and leaf of common bean. Genetics Mol. Biol. 43(1), e20180259 (2019).
Guo, Y. et al. Meta-analysis of the effects of overexpression of WRKY transcription factors on plant responses to drought stress. BMC Genet. 20, 63 (2019). (PMID: 313497816660937)
Rushton, P. J., Somssich, I. E., Ringler, P. & Shen, Q. J. WRKY transcription factors. Trends Plant Sci. 15, 247–258 (2010). (PMID: 20304701)
Zhu, D. et al. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress. Plant Sci. 280, 132–142 (2019). (PMID: 30823991)
Sharoni, A. M. et al. Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64. Mol. Genet. Genomics 287, 1–19 (2012). (PMID: 22102215)
Nuruzzaman, M. et al. Genome-wide analysis of NAC transcription factor family in rice. Gene 465, 30–44 (2010). (PMID: 20600702)
Heim, M. A. et al. The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 20, 735–747 (2003). (PMID: 12679534)
Carretero-Paulet, L. et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol. 153, 1398–1412 (2010). (PMID: 204727522899937)
Zhang, Y., Zhou, J. & Wang, L. Mini review roles of the bZIP gene family in rice. Genetics Mol. Res. GMR 13, 3025–3036 (2014). (PMID: 24782137)
Wang, W., Qiu, X., Yang, Y., Kim, H.-S., Jia, X., Yu, H. & Kwak, S.-S. Isolation, expression and function analysis of a bZIP transcription factor IbbZIP37 in sweetpotato (Ipomoea batatas L.[Lam]). Emir. J. Food Agric. 31(2), 134–142 (2019).
Kiełbowicz-Matuk, A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci. 185, 78–85 (2012). (PMID: 22325868)
Morita, M. T. et al. A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems. Plant J. 47, 619–628 (2006). (PMID: 16813575)
Dubos, C. et al. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573–581 (2010). (PMID: 20674465)
Ambawat, S., Sharma, P., Yadav, N. R. & Yadav, R. C. MYB transcription factor genes as regulators for plant responses: an overview. Physiol. Mol. Biol. Plants 19, 307–321 (2013). (PMID: 244315003715649)
Wan, X.-R. & Li, L. Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochem. Biophys. Res. Commun. 347, 1030–1038 (2006). (PMID: 16870153)
He, Z., Wu, J., Sun, X. & Dai, M. The maize clade A PP2C phosphatases play critical roles in multiple abiotic stress responses. Int. J. Mol. Sci. 20, 3573 (2019). (PMID: 6679055)
Rigoulot, S. B., Petzold, H. E., Williams, S. P., Brunner, A. M. & Beers, E. P. Populus trichocarpa clade A PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development. Plant Mol. Biol. 100, 303–317 (2019). (PMID: 30945147)
Yin, D. et al. PhERF2, an ethylene-responsive element binding factor, plays an essential role in waterlogging tolerance of petunia. Horticult. Res. 6, 1–11 (2019).
Mawlong, I., Ali, K., Srinivasan, R., Rai, R. & Tyagi, A. Functional validation of a drought-responsive AP2/ERF family transcription factor-encoding gene from rice in Arabidopsis. Mol. Breed. 35, 163 (2015).
Lau, K. H. et al. Transcriptomic analysis of sweet potato under dehydration stress identifies candidate genes for drought tolerance. Plant Direct 2, e00092 (2018). (PMID: 312456926508841)
Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol. 17, 113–122 (2006). (PMID: 16495045)
Kumar, A. & Dash, P. K. Transcriptome Analysis (IntechOpen, London, 2019).
Fromm, H. & Fichman, Y. Sensory Biology of Plants 79–94 (Springer, Berlin, 2019).
Argentel-Martínez, L., Garatuza-Payan, J., Yepez, E. A., Arredondo, T. & de los Santos-Villalobos, S. Water regime and osmotic adjustment under warming conditions on wheat in the Yaqui Valley, Mexico. PeerJ 7, e7029 (2019). (PMID: 312235276570998)
Meena, M. et al. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5, e02952 (2019). (PMID: 318721236909094)
Yong, B., Wang, X., Xu, P., Zheng, H., Fei, X., Hong, Z., Ma, Q., Miao, Y., Yuan, X., & Jiang, Y. Isolation and abiotic stress resistance analyses of a catalase gene from Ipomoea batatas (L.) Lam. BioMed Res. Int. 2017 (2017).
Zheng, J. et al. Isolation and characterization of an atypical LEA gene (IpLEA) from Ipomoea pes-caprae conferring salt/drought and oxidative stress tolerance. Sci. Rep. 9, 1–21 (2019).
Mangu, V. R., Ratnasekera, D., Yabes, J. C., Wing, R. A. & Baisakh, N. Functional screening of genes from a halophyte wild rice relative Porteresia coarctata in Arabidopsis model identifies candidate genes involved in salt tolerance. Curr. Plant Biol. 18, 100107. https://doi.org/10.1016/j.cpb.2019.100107 (2019). (PMID: 10.1016/j.cpb.2019.100107)
Du, Y. Y., Wang, P. C., Chen, J. & Song, C. P. Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J. Integr. Plant Biol. 50, 1318–1326 (2008). (PMID: 19017119)
Joo, J., Lee, Y. H. & Song, S. I. Rice CatA, CatB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively. J. Plant Biol. 57, 375–382 (2014).
Bouzroud, S., Barbosa, M. A. M., Gasparini, K., Fahr, M., Bendaou, N., Bouzayen, M., Zsogon, A., Smouni, A., & Zouine, M. Loss of AUXIN RESPONSE FACTOR 4 function alters plant growth, stomatal functions and improves tomato tolerance to salinity and water deficit. bioRxiv 756387 (2019).
Mishra, Y. et al. Expression, purification, crystallization and preliminary X-ray crystallographic studies of alkyl hydroperoxide reductase (AhpC) from the cyanobacterium Anabaena sp. PCC 7120. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 1203–1206 (2011). (PMID: 221020273212362)
Park, S.-C. et al. Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic-and salt stress-tolerance of transgenic calli. Planta 233, 621–634 (2011). (PMID: 21136074)
المشرفين على المادة: 0 (Plant Proteins)
0 (RNA, Plant)
تواريخ الأحداث: Date Created: 20200730 Date Completed: 20201211 Latest Revision: 20210728
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7387466
DOI: 10.1038/s41598-020-69232-3
PMID: 32724138
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-020-69232-3