دورية أكاديمية

Genotyping of Russian isolates of fungal pathogen Trichophyton rubrum, based on simple sequence repeat and single nucleotide polymorphism.

التفاصيل البيبلوغرافية
العنوان: Genotyping of Russian isolates of fungal pathogen Trichophyton rubrum, based on simple sequence repeat and single nucleotide polymorphism.
المؤلفون: Pchelin IM; Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia., Mochalov YV; Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia., Azarov DV; Department of Epidemiology, Parasitology and Disinfectology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia., Romanyuk SA; City Hospital No. 40, Saint Petersburg, Russia., Chilina GA; Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia., Vybornova IV; Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia., Bogdanova TV; Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia., Zlatogursky VV; Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia., Apalko SV; City Hospital No. 40, Saint Petersburg, Russia., Vasilyeva NV; Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia.; Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia., Taraskina AE; Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia.
المصدر: Mycoses [Mycoses] 2020 Nov; Vol. 63 (11), pp. 1244-1254. Date of Electronic Publication: 2020 Sep 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Grosse Verlag Country of Publication: Germany NLM ID: 8805008 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-0507 (Electronic) Linking ISSN: 09337407 NLM ISO Abbreviation: Mycoses Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Grosse Verlag, [1988?-
مستخلص: Background: The Trichophyton rubrum species group consists of prevalent causative agents of human skin, nail and hair infections, including T rubrum sensu stricto and T violaceum, as well as other less well-established or debatable taxa like T soudanense, T kuryangei and T megninii. Our previous study provided limited evidence in favour of the existence of two genetic lineages in the Russian T rubrum sensu stricto population.
Objectives: We aimed to study the genetic structure of the Russian population of T rubrum and to identify factors shaping this structure.
Methods: We analysed the polymorphism of 12 simple sequence repeat (SSR or microsatellite) markers and single nucleotide polymorphism in the TERG_02941 protein-coding gene in 70 T rubrum isolates and performed a phylogenomic reconstruction.
Results: All three types of data provided conclusive evidence that the population consists of two genetic lineages. Clustering, performed by means of microsatellite length polymorphism analysis, was strongly dependent on the number of nucleotide repeats in the 5'-area of the fructose-1,6-bisphosphate aldolase gene. Analysis of molecular variance (AMOVA) on the basis of SSR typing data indicated that 22%-48% of the variability was among groups within T rubrum. There was no clear connection of population structure with types of infection, places of geographic origin, aldolase gene expression or urease activity.
Conclusion: Our results suggest that the Russian population of T rubrum consists of two cosmopolitan genetic lineages.
(© 2020 Wiley-VCH GmbH.)
References: Sigurgeirsson B, Baran R. The prevalence of onychomycosis in the global population: a literature study. J Eur Acad Dermatol Venereol. 2014;28(11):1480-1491.
Summerbell RC, Haugland RA, Li A, Gupta AK. rRNA gene internal transcribed spacer 1 and 2 sequences of asexual, anthropophilic dermatophytes related to Trichophyton rubrum. J Clin Microbiol. 1999;37(12):4005-4011.
Li HC, Bouchara JP, Hsu MM, Barton R, Su S, Chang TC. Identification of dermatophytes by sequence analysis of the rRNA gene internal transcribed spacer regions. J Med Microbiol. 2008;57(5):592-600.
Zhan P, Dukik K, Li D, et al. Phylogeny of dermatophytes with genomic character evaluation of clinically distinct Trichophyton rubrum and T violaceum. Stud Mycol. 2018;89:153-175.
Su H, Packeu A, Ahmed SA, et al. Species distinction in the Trichophyton rubrum complex. J Clin Microbiol. 2019;57(9):e00352-19.
Packeu A, Stubbe D, Roesems S, et al. Lineages within the Trichophyton rubrum complex. Mycopathologia. 2020;185(1):123-136.
Gräser Y, Fröhlich J, Presber W, de Hoog S. Microsatellite markers reveal geographic population differentiation in Trichophyton rubrum. J Med Microbiol. 2007;56(8):1058-1065.
Gong J, Wu W, Ran MengLong, et al. Population differentiation and genetic diversity of Trichophyton rubrum as revealed by highly discriminatory microsatellites. Fungal Genet Biol. 2016;95:24-29.
Gräser Y, Kühnisch J, Presber W. Molecular markers reveal exclusively clonal reproduction in Trichophyton rubrum. J Clin Microbiol. 1999;37(11):3713-3717.
Mirhendi H, Makimura K, de Hoog GS, et al. Translation elongation factor 1-α gene as a potential taxonomic and identification marker in dermatophytes. Med Mycol. 2015;53(3):215-224.
Pchelin IM, Zlatogursky VV, Rudneva MV, et al. Reconstruction of phylogenetic relationships in dermatomycete genus Trichophyton Malmsten 1848 based on ribosomal internal transcribed spacer region, partial 28S rRNA and beta-tubulin genes sequences. Mycoses. 2016;59(9):566-575.
Li W, Metin B, White TC, Heitman J. Organization and evolutionary trajectory of the mating type (MAT) locus in dermatophyte and dimorphic fungal pathogens. Eukaryot Cell. 2010;9(1):46-58.
Kano R, Isizuka M, Hiruma M, Mochizuki T, Kamata H, Hasegawa A. Mating type gene (MAT1-1) in Japanese isolates of Trichophyton rubrum. Mycopathologia. 2013;175(1-2):171-173.
Persinoti GF, Martinez DA, Li W, et al. Whole-genome analysis illustrates global clonal population structure of the ubiquitous dermatophyte pathogen Trichophyton rubrum. Genetics. 2018;208(4):1657-1669.
Arabatzis M, Velegraki A, Kantardjiev T, Stavrakieva V, Rigopoulos D, Katsambas A. First report on autochthonous urease-positive Trichophyton rubrum (T raubitschekii) from South-east Europe. Br J Dermatol. 2005;153(1):178-182.
Pchelin IM, Azarov DV, Chilina GA, Dmitriev KA, Vasilyeva NV, Taraskina AE. Single-nucleotide polymorphism in a local population of Trichophyton rubrum. Med Mycol. 2018;56(1):125-128.
Zheng H, Blechert O, Mei H, et al. Whole-genome resequencing of Trichophyton rubrum provides insights into population differentiation and drug resistance. Mycopathologia. 2020;185(1):103-112.
Martinez DA, Oliver BG, Gräser Y, et al. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. MBio. 2012;3(5):e00259-12.
Latka C, Dey SS, Mahajan S, et al. Genome sequence of a clinical isolate of dermatophyte, Trichophyton rubrum from India. FEMS Microbiol Lett. 2015;362(8):fnv039.
White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR Protocols and Applications: A Laboratory Manual. New York, NY: Academic Press; 1990:315-322.
Jacob TR, Peres NT, Persinoti GF, et al. rpb2 is a reliable reference gene for quantitative gene expression analysis in the dermatophyte Trichophyton rubrum. Med Mycol. 2012;50(4):368-377.
Arendrup MC, Meletiadis J, Mouton JW, et al. EUCAST definitive document E. Def 9.3.1 method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. EUCAST. 2017.
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134.
Pchelin IM, Azarov DV, Churina MA, et al. Whole genome sequence of first Candida auris strain, isolated in Russia. Med Mycol. 2020;58(3):414-416.
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed: 22.02.2020.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120.
Nurk S, Bankevich A, Antipov D, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Deng M, Jiang R, Sun F, Zhang X, eds. Annual International Conference on Research in Computational Molecular Biology. Berlin, Heidelberg: Springer; 2013:158-170.
Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15(11):524.
Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.
Bruvo R, Michiels NK, D'Souza TG, Schulenburg H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol. 2004;13(7):2101-2106.
Clark L, Jasieniuk M. Polysat: an R package for polyploid microsatellite analysis. Mol Ecol Resour. 2011;11(3):562-566.
Rozenfeld AF, Arnaud-Haond S, Hernández-García E, et al. Spectrum of genetic diversity and networks of clonal organisms. J R Soc Interface. 2007;4(17):1093-1102.
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23(2):254-267.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-2729.
Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281.
Peakall R, Smouse PE. genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1):288-295.
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics. 2012;28(19):2537-2539.
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7(1-2):203-214.
Kano R, Kawasaki M, Mochizuki T, Hiruma M, Hasegawa A. Mating genes of the Trichophyton mentagrophytes complex. Mycopathologia. 2012;173(2-3):103-112.
Pchelin IM, Kryuchkova MA, Bogdanova TV, et al. We need more powerful microsatellite assay for population genetic studies of Trichophyton rubrum. Med Mycol. 2018;56(S2):S119.
Leliaert F, Verbruggen H, Vanormelingen P, et al. DNA-based species delimitation in algae. Eur J Phycol. 2014;49(2):179-196.
Nelson DL, Cox MM. Lehninger Principles of Biochemistry. . New York, NY: Freeman; 2008.
Summerbell RC. Form and function in the evolution of dermatophytes. In: Kushwaha RKS, Guarro J, editors. Biology of dermatophytes and other keratinophilic fungi. Rev Iberoam Micol. 2000;17:30-43.
Hiruma M, Kano R, Sugita T, Mochizuki T, Hasegawa A, Hiruma M. Urease gene of Trichophyton rubrum var. raubitschekii. J Dermatol. 2013;40:111-113.
Adamski Z, Kowalczyk MJ, Adamska K, et al. The first non-African case of Trichophyton rubrum var. raubitschekii or a urease-positive Trichophyton rubrum in Central Europe? Mycopathologia. 2014;178(1-2):91-96.
Ahmadpour A, Castell-Miller C, Javan-Nikkhah M, et al. Population structure, genetic diversity, and sexual state of the rice brown spot pathogen Bipolaris oryzae from three Asian countries. Plant Pathol. 2018;67(1):181-192.
Singh N, Anand G, Kapoor R. Virulence and genetic diversity among Fusarium oxysporum f. sp. carthami isolates of India using multilocus RAPD and ISSR markers. Trop Plant Pathol. 2019;44(5):409-422.
Sexton AC, Howlett BJ. Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Curr Genet. 2004;46(6):357-365.
Kashyap PL, Kumar S, Kumar RS, et al. Identification of novel microsatellite markers to assess the population structure and genetic differentiation of Ustilago hordei causing covered smut of barley. Front Microbiol. 2020;10:2929.
Abdel-Rahman SM, Sugita T, González GM, et al. Divergence among an international population of Trichophyton tonsurans isolates. Mycopathologia. 2010;169(1):1-13.
Mironenko NV, Baranova OA, Kovalenko NM, Mikhailova LA, Rosseva LP. Genetic structure of the Russian populations of Pyrenophora tritici-repentis, determined by using microsatellite markers. Russ J Genet. 2016;52(8):771-779.
Gultyaeva EI, Aristova MK, Shaidayuk EL, et al. Genetic differentiation of Puccinia triticina Erikss in Russia. Russ J Genet. 2017;53(9):998-1005.
Taghipour S, Pchelin IM, Zarei Mahmoudabadi A, et al. Trichophyton mentagrophytes and T interdigitale genotypes are associated with particular geographic areas and clinical manifestations. Mycoses. 2019;62(11):1084-1091.
Jackson CJ, Barton RC, Kelly SL, Evans EG. Strain identification of Trichophyton rubrum by specific amplification of subrepeat elements in the ribosomal DNA nontranscribed spacer. J Clin Microbiol. 2000;38(12):4527-4534.
Baeza LC, Matsumoto MT, Almeida AMF, Mendes-Giannini MJS. Strain differentiation of Trichophyton rubrum by randomly amplified polymorphic DNA and analysis of rDNA nontranscribed spacer. J Med Microbiol. 2006;55(Pt 4):429-436.
de Assis SD, de Carvalho Araújo RA, Kohler LM, Machado-Pinto J, Hamdan JS, Cisalpino PS. Molecular typing and antifungal susceptibility of Trichophyton rubrum isolates from patients with onychomycosis pre- and post-treatment. Int J Antimicrob Agents. 2007;29(5):563-569.
Rad MM, Mohammadi AMA, Barton RC. PCR typing of Trichophyton rubrum isolates by specific amplification of subrepeat elements in ribosomal DNA nontranscribed spacer. Iranian J Dermatol. 2008;11(1):17-20.
Hryncewicz-Gwóźdź A, Jagielski T, Sadakierska-Chudy A, et al. Molecular typing of Trichophyton rubrum clinical isolates from Poland. Mycoses. 2011;54(6):e726-e736.
Takahashi I, Fukushima K, Miyaji M, Nishimura K, Asano K, Iizuka H. Species identification and strain typing of dermatophytes by single-strand conformation polymorphism (SSCP) analysis of the ribosomal DNA and polymerase chain reaction analysis of subrepeat elements in the intergenic spacer region of Trichophyton rubrum. Asahikawa Med Univ Repository. 2015;15:27-36.
Ramaraj V, Vijayaraman RS, Elavarashi E, Rangarajan S, Kindo AJ. Molecular strain typing of clinical isolates, Trichophyton rubrum using non transcribed spacer (NTS) region as a molecular marker. J Clin Diagn Res. 2017;11(5):DC04-DC09.
Suzuki S, Mano Y, Furuya N, Fujitani K. Molecular epidemiological analysis of the spreading conditions of Trichophyton in long-term care facilities in Japan. Jpn J Infect Dis. 2018;71(6):462-466.
Tibayrenc M. The species concept in parasites and other pathogens: a pragmatic approach? Trends Parasitol. 2006;22(2):66-70.
Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol. 2008;6(6):431-440.
Giraud T, Refrégier G, Le Gac M, de Vienne DM, Hood ME. Speciation in fungi. Fungal Genet Biol. 2008;45(6):791-802.
Lackner M, Obermair J, Naschberger V, et al. Cryptic species of Aspergillus section Terrei display essential physiological features to cause infection and are similar in their virulence potential in Galleria mellonella. Virulence. 2019;10(1):542-554.
Martins MP, Rossi A, Sanches PR, Bortolossi JC, Martinez-Rossi NM. Comprehensive analysis of the dermatophyte Trichophyton rubrum transcriptional profile reveals dynamic metabolic modulation. Biochem J. 2020;477(5):873-885.
معلومات مُعتمدة: 18-34-00153 Russian Foundation for Basic Research
فهرسة مساهمة: Keywords: Trichophyton rubrum; dermatophyte; microsatellites; molecular strain typing; population structure; whole-genome sequencing
تواريخ الأحداث: Date Created: 20200814 Latest Revision: 20231129
رمز التحديث: 20240628
DOI: 10.1111/myc.13162
PMID: 32785975
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-0507
DOI:10.1111/myc.13162