دورية أكاديمية

Ion Channel Dysregulation in Head and Neck Cancers: Perspectives for Clinical Application.

التفاصيل البيبلوغرافية
العنوان: Ion Channel Dysregulation in Head and Neck Cancers: Perspectives for Clinical Application.
المؤلفون: Del-Río-Ibisate N; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, Universidad de Oviedo, Oviedo, Spain.; Ciber de Cáncer, CIBERONC, Madrid, Spain., Granda-Díaz R; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, Universidad de Oviedo, Oviedo, Spain.; Ciber de Cáncer, CIBERONC, Madrid, Spain., Rodrigo JP; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, Universidad de Oviedo, Oviedo, Spain.; Ciber de Cáncer, CIBERONC, Madrid, Spain., Menéndez ST; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, Universidad de Oviedo, Oviedo, Spain. sofiatirados@gmail.com.; Ciber de Cáncer, CIBERONC, Madrid, Spain. sofiatirados@gmail.com., García-Pedrero JM; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, Universidad de Oviedo, Oviedo, Spain. juanagp.finba@gmail.com.; Ciber de Cáncer, CIBERONC, Madrid, Spain. juanagp.finba@gmail.com.
المصدر: Reviews of physiology, biochemistry and pharmacology [Rev Physiol Biochem Pharmacol] 2021; Vol. 181, pp. 375-427.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0434624 Publication Model: Print Cited Medium: Print ISSN: 0303-4240 (Print) Linking ISSN: 03034240 NLM ISO Abbreviation: Rev Physiol Biochem Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مواضيع طبية MeSH: Head and Neck Neoplasms*, Biomarkers, Tumor ; Gene Expression Regulation, Neoplastic ; Humans ; Ion Channels/genetics ; Prognosis ; Squamous Cell Carcinoma of Head and Neck
مستخلص: Head and neck cancers are a highly complex and heterogeneous group of malignancies that involve very diverse anatomical structures and distinct aetiological factors, treatments and clinical outcomes. Among them, head and neck squamous cell carcinomas (HNSCC) are predominant and the sixth most common cancer worldwide with still low survival rates. Omic technologies have unravelled the intricacies of tumour biology, harbouring a large diversity of genetic and molecular changes to drive the carcinogenesis process. Nonetheless, this remarkable heterogeneity of molecular alterations opens up an immense opportunity to discover novel biomarkers and develop molecular-targeted therapies. Increasing evidence demonstrates that dysregulation of ion channel expression and/or function is frequently and commonly observed in a variety of cancers from different origin. As a consequence, the concept of ion channels as potential membrane therapeutic targets and/or biomarkers for cancer diagnosis and prognosis has attracted growing attention. This chapter intends to comprehensively and critically review the current state-of-art ion channel dysregulation specifically focusing on head and neck cancers and to formulate the major challenges and research needs to translate this knowledge into clinical application. Based on current reported data, various voltage-gated potassium (K v ) channels (i.e. K v 3.4, K v 10.1 and K v 11.1) have been found frequently aberrantly expressed in HNSCC as well as precancerous lesions and are highlighted as clinically and biologically relevant features in both early stages of tumourigenesis and late stages of disease progression. More importantly, they also emerge as promising candidates as cancer risk markers, tumour markers and potential anti-proliferative and anti-metastatic targets for therapeutic interventions; however, the oncogenic properties seem to be independent of their ion-conducting function.
(© 2020. Springer Nature Switzerland AG.)
References: Agrawal N, Frederick MJ, Pickering CR et al (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333:1154–1157. https://doi.org/10.1126/science.1206923. (PMID: 10.1126/science.1206923217988973162986)
Alfieri S, Cavalieri S, Licitra L (2018) Immunotherapy for recurrent/metastatic head and neck cancer. Curr Opin Otolaryngol Head Neck Surg 26:152–156. https://doi.org/10.1097/MOO.0000000000000448. (PMID: 10.1097/MOO.000000000000044829432222)
Arcangeli A (2005) Expression and role of hERG channels in cancer cells. Novartis Found Symp 266:225–232. discussion 232-4. (PMID: 16050271)
Arcangeli A, Crociani O, Lastraioli E et al (2009) Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr Med Chem 16:66–93. https://doi.org/10.2174/092986709787002835. (PMID: 10.2174/09298670978700283519149563)
Argiris A, Karamouzis MV, Raben D, Ferris RL (2008) Head and neck cancer. Lancet (London, England) 371:1695–1709. https://doi.org/10.1016/S0140-6736(08)60728-X. (PMID: 10.1016/S0140-6736(08)60728-X)
Asher V, Sowter H, Shaw R et al (2010) Eag and HERG potassium channels as novel therapeutic targets in cancer. World J Surg Oncol 8:113. https://doi.org/10.1186/1477-7819-8-113. (PMID: 10.1186/1477-7819-8-113211905773022597)
Ayoub C, Wasylyk C, Li Y et al (2010) ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. Br J Cancer 103:715–726. https://doi.org/10.1038/sj.bjc.6605823. (PMID: 10.1038/sj.bjc.6605823206646002938263)
Bae JY, Lee S-W, Shin Y-H et al (2017) P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget 8:48972–48982. https://doi.org/10.18632/oncotarget.16903. (PMID: 10.18632/oncotarget.16903284306655564741)
Becchetti A (2011) Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol 301:C255–C265. https://doi.org/10.1152/ajpcell.00047.2011. (PMID: 10.1152/ajpcell.00047.201121430288)
Becchetti A, Crescioli S, Zanieri F et al (2017) The conformational state of hERG1 channels determines integrin association, downstream signaling, and cancer progression. Sci Signal 10. https://doi.org/10.1126/scisignal.aaf3236.
Bernaldo de Quirós S, Merlo A, Secades P et al (2013) Identification of TRPC6 as a possible candidate target gene within an amplicon at 11q21-q22.2 for migratory capacity in head and neck squamous cell carcinomas. BMC Cancer 13:116. https://doi.org/10.1186/1471-2407-13-116. (PMID: 10.1186/1471-2407-13-116234971983606258)
Berry KL, Hobert O (2006) Mapping functional domains of chloride intracellular channel (CLIC) proteins in vivo. J Mol Biol 359:1316–1333. https://doi.org/10.1016/j.jmb.2006.04.046. (PMID: 10.1016/j.jmb.2006.04.04616737711)
Bill A, Alex Gaither L (2017) The mechanistic role of the calcium-activated chloride channel ANO1 in tumor growth and signaling. Adv Exp Med Biol 966:1–14. https://doi.org/10.1007/5584_2016_201. (PMID: 10.1007/5584_2016_20128293832)
Bill A, Gutierrez A, Kulkarni S et al (2015) ANO1/TMEM16A interacts with EGFR and correlates with sensitivity to EGFR-targeting therapy in head and neck cancer. Oncotarget 6:9173–9188. https://doi.org/10.18632/oncotarget.3277. (PMID: 10.18632/oncotarget.3277258238194496210)
Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–578. https://doi.org/10.1056/NEJMoa053422. (PMID: 10.1056/NEJMoa05342216467544)
Braakhuis BJM, Tabor MP, Kummer JA et al (2003) A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res 63:1727–1730. (PMID: 12702551)
Brockmeyer P, Jung K, Perske C et al (2014) Membrane connexin 43 acts as an independent prognostic marker in oral squamous cell carcinoma. Int J Oncol 45:273–281. https://doi.org/10.3892/ijo.2014.2394. (PMID: 10.3892/ijo.2014.239424788723)
Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59–87. https://doi.org/10.1111/j.1600-065X.2009.00816.x. (PMID: 10.1111/j.1600-065X.2009.00816.x197548903133616)
Califano J, Westra WH, Meininger G et al (2000) Genetic progression and clonal relationship of recurrent premalignant head and neck lesions. Clin Cancer Res 6:347–352. (PMID: 10690509)
Camacho J (2006) Ether à go-go potassium channels and cancer. Cancer Lett 233:1–9. https://doi.org/10.1016/j.canlet.2005.02.016. (PMID: 10.1016/j.canlet.2005.02.01616473665)
Canel M, Secades P, Rodrigo J-P et al (2006) Overexpression of focal adhesion kinase in head and neck squamous cell carcinoma is independent of FAK gene copy number. Clin Cancer Res 12:3272–3279. https://doi.org/10.1158/1078-0432.CCR-05-1583. (PMID: 10.1158/1078-0432.CCR-05-158316740747)
Canel M, Secades P, Garzón-Arango M et al (2008) Involvement of focal adhesion kinase in cellular invasion of head and neck squamous cell carcinomas via regulation of MMP-2 expression. Br J Cancer 98:1274–1284. https://doi.org/10.1038/sj.bjc.6604286. (PMID: 10.1038/sj.bjc.6604286183498462359633)
Canel M, Serrels A, Frame MC, Brunton VG (2013) E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126:393–401. https://doi.org/10.1242/jcs.100115. (PMID: 10.1242/jcs.10011523525005)
Cázares-Ordoñez V, Pardo LA (2017) Kv10.1 potassium channel: from the brain to the tumors. Biochem Cell Biol 95:531–536. https://doi.org/10.1139/bcb-2017-0062. (PMID: 10.1139/bcb-2017-006228708947)
Chang K-W, Yuan T-C, Fang K-P et al (2003) The increase of voltage-gated potassium channel Kv3.4 mRNA expression in oral squamous cell carcinoma. J Oral Pathol Med 32:606–611. https://doi.org/10.1034/j.1600-0714.2003.00197.x. (PMID: 10.1034/j.1600-0714.2003.00197.x14632936)
Chang Y-H, Wu C-C, Chang K-P et al (2009) Cell secretome analysis using hollow fiber culture system leads to the discovery of CLIC1 protein as a novel plasma marker for nasopharyngeal carcinoma. J Proteome Res 8:5465–5474. https://doi.org/10.1021/pr900454e. (PMID: 10.1021/pr900454e19845400)
Chen Y, Sánchez A, Rubio ME et al (2011) Functional KV10.1 channels localize to the inner nuclear membrane. PLoS One 6:e19257. https://doi.org/10.1371/journal.pone.0019257. (PMID: 10.1371/journal.pone.0019257215592853086910)
Chênevert J, Duvvuri U, Chiosea S et al (2012) DOG1: a novel marker of salivary acinar and intercalated duct differentiation. Mod Pathol 25:919–929. https://doi.org/10.1038/modpathol.2012.57. (PMID: 10.1038/modpathol.2012.5722460810)
Chernyavsky AI, Shchepotin IB, Grando SA (2015) Mechanisms of growth-promoting and tumor-protecting effects of epithelial nicotinic acetylcholine receptors. Int Immunopharmacol 29:36–44. https://doi.org/10.1016/j.intimp.2015.05.033. (PMID: 10.1016/j.intimp.2015.05.03326071223)
Chimote AA, Hajdu P, Kucher V et al (2013) Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of human T cells. J Immunol 191:6273–6280. https://doi.org/10.4049/jimmunol.1300702. (PMID: 10.4049/jimmunol.130070224227782)
Chimote AA, Hajdu P, Sfyris AM et al (2017) Kv1.3 channels mark functionally competent CD8 + tumor-infiltrating lymphocytes in head and neck cancer. Cancer Res 77:53–61. https://doi.org/10.1158/0008-5472.CAN-16-2372. (PMID: 10.1158/0008-5472.CAN-16-237227815390)
Chimote AA, Balajthy A, Arnold MJ et al (2018) A defect in KCa3.1 channel activity limits the ability of CD8+ T cells from cancer patients to infiltrate an adenosine-rich microenvironment. Sci Signal 11:eaaq1616. https://doi.org/10.1126/scisignal.aaq1616. (PMID: 10.1126/scisignal.aaq1616296923616006512)
Chimote AA, Gawali VS, Newton HS et al (2020) A compartmentalized reduction in membrane-proximal calmodulin reduces the immune surveillance capabilities of CD8+ T cells in head and neck cancer. Front Pharmacol 11:143. https://doi.org/10.3389/fphar.2020.00143. (PMID: 10.3389/fphar.2020.00143321847267059094)
Chow LQM (2020) Head and neck cancer. N Engl J Med 382:60–72. https://doi.org/10.1056/NEJMra1715715. (PMID: 10.1056/NEJMra171571531893516)
Cristofaro MG, Scumaci D, Fiumara CV et al (2014) Identification of prognosis-related proteins in gingival squamous cell carcinoma by two-dimensional gel electrophoresis and mass spectrometry-based proteomics. Ann Ital Chir 85:518–524. (PMID: 25712919)
Crociani O, Guasti L, Balzi M et al (2003) Cell cycle-dependent expression of HERG1 and HERG1B isoforms in tumor cells. J Biol Chem 278:2947–2955. https://doi.org/10.1074/jbc.M210789200. (PMID: 10.1074/jbc.M21078920012431979)
Cruz-Gregorio A, Aranda-Rivera AK, Aparicio-Trejo OE et al (2019) E6 oncoproteins from high-risk human papillomavirus induce mitochondrial metabolism in a head and neck squamous cell carcinoma model. Biomolecules 9. https://doi.org/10.3390/biom9080351.
Dános K, Brauswetter D, Birtalan E et al (2016) The potential prognostic value of connexin 43 expression in head and neck squamous cell carcinomas. Appl Immunohistochem Mol Morphol 24:476–481. https://doi.org/10.1097/PAI.0000000000000212. (PMID: 10.1097/PAI.000000000000021226447893)
de Vicente JC, Rodrigo JP, Rodriguez-Santamarta T et al (2012) Cortactin and focal adhesion kinase as predictors of cancer risk in patients with premalignant oral epithelial lesions. Oral Oncol 48:641–646. https://doi.org/10.1016/j.oraloncology.2012.02.004. (PMID: 10.1016/j.oraloncology.2012.02.00422377015)
Delporte C, Steinfeld S (2006) Distribution and roles of aquaporins in salivary glands. Biochim Biophys Acta 1758:1061–1070. https://doi.org/10.1016/j.bbamem.2006.01.022. (PMID: 10.1016/j.bbamem.2006.01.02216537077)
Diochot S, Schweitz H, Béress L, Lazdunski M (1998) Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4. J Biol Chem 273:6744–6749. https://doi.org/10.1074/jbc.273.12.6744. (PMID: 10.1074/jbc.273.12.67449506974)
Dixit R, Kemp C, Kulich S et al (2015) TMEM16A/ANO1 is differentially expressed in HPV-negative versus HPV-positive head and neck squamous cell carcinoma through promoter methylation. Sci Rep 5:16657. https://doi.org/10.1038/srep16657. (PMID: 10.1038/srep16657265639384643216)
Dou Y, Li Y, Chen J et al (2013) Inhibition of cancer cell proliferation by midazolam by targeting transient receptor potential melastatin 7. Oncol Lett 5:1010–1016. https://doi.org/10.3892/ol.2013.1129. (PMID: 10.3892/ol.2013.1129234267843576402)
Duvvuri U, Shiwarski DJ, Xiao D et al (2012) TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res 72:3270–3281. https://doi.org/10.1158/0008-5472.CAN-12-0475-T. (PMID: 10.1158/0008-5472.CAN-12-0475-T225645243694774)
Echevarría M, Muñoz-Cabello AM, Sánchez-Silva R et al (2007) Development of cytosolic hypoxia and hypoxia-inducible factor stabilization are facilitated by aquaporin-1 expression. J Biol Chem 282:30207–30215. https://doi.org/10.1074/jbc.M702639200. (PMID: 10.1074/jbc.M70263920017673462)
Edwards JC, Kahl CR (2010) Chloride channels of intracellular membranes. FEBS Lett 584:2102–2111. https://doi.org/10.1016/j.febslet.2010.01.037. (PMID: 10.1016/j.febslet.2010.01.037201004802929963)
Erdem M, Tekiner TA, Fejzullahu A et al (2015) Herg1b expression as a potential specific marker in pediatric acute myeloid leukemia patients with HERG 897K/K genotype. Pediatr Hematol Oncol 32:182–192. https://doi.org/10.3109/08880018.2014.949941. (PMID: 10.3109/08880018.2014.94994125247487)
Espinosa I, Lee C-H, Kim MK et al (2008) A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 32:210–218. https://doi.org/10.1097/PAS.0b013e3181238cec. (PMID: 10.1097/PAS.0b013e3181238cec18223323)
Fanjul-Fernández M, Quesada V, Cabanillas R et al (2013) Cell-cell adhesion genes CTNNA2 and CTNNA3 are tumour suppressors frequently mutated in laryngeal carcinomas. Nat Commun 4:2531. https://doi.org/10.1038/ncomms3531. (PMID: 10.1038/ncomms353124100690)
Fernández-Valle Á, Rodrigo JP, García-Pedrero JM et al (2016a) Expression of the voltage-gated potassium channel Kv3.4 in oral leucoplakias and oral squamous cell carcinomas. Histopathology 69:91–98. https://doi.org/10.1111/his.12917. (PMID: 10.1111/his.1291726648458)
Fernández-Valle Á, Rodrigo JP, Rodríguez-Santamarta T et al (2016b) HERG1 potassium channel expression in potentially malignant disorders of the oral mucosa and prognostic relevance in oral squamous cell carcinoma. Head Neck 38:1672–1678. https://doi.org/10.1002/hed.24493. (PMID: 10.1002/hed.2449327131339)
Feske S, Skolnik EY, Prakriya M (2012) Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 12:532–547. https://doi.org/10.1038/nri3233. (PMID: 10.1038/nri3233226998333670817)
Feske S, Wulff H, Skolnik EY (2015) Ion channels in innate and adaptive immunity. Annu Rev Immunol 33:291–353. https://doi.org/10.1146/annurev-immunol-032414-112212. (PMID: 10.1146/annurev-immunol-032414-112212258619764822408)
Finegersh A, Kulich S, Guo T et al (2017) DNA methylation regulates TMEM16A/ANO1 expression through multiple CpG islands in head and neck squamous cell carcinoma. Sci Rep 7:15173. https://doi.org/10.1038/s41598-017-15634-9. (PMID: 10.1038/s41598-017-15634-9291232405680248)
Forastiere A, Koch W, Trotti A, Sidransky D (2001) Head and neck cancer. N Engl J Med 345:1890–1900. https://doi.org/10.1056/NEJMra001375. (PMID: 10.1056/NEJMra00137511756581)
Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245. (PMID: 10.1038/nrc324522419253)
Friedrich T, Breiderhoff T, Jentsch TJ (1999) Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J Biol Chem 274:896–902. https://doi.org/10.1074/jbc.274.2.896. (PMID: 10.1074/jbc.274.2.8969873029)
Gavrilova-Ruch O, Schönherr K, Gessner G et al (2002) Effects of imipramine on ion channels and proliferation of IGR1 melanoma cells. J Membr Biol 188:137–149. https://doi.org/10.1007/s00232-001-0181-3. (PMID: 10.1007/s00232-001-0181-312172639)
Gillison ML, Koch WM, Capone RB et al (2000) Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 92:709–720. https://doi.org/10.1093/jnci/92.9.709. (PMID: 10.1093/jnci/92.9.70910793107)
Gilman KE, Camden JM, Klein RR et al (2019) P2X7 receptor deletion suppresses γ-radiation-induced hyposalivation. Am J Physiol Regul Integr Comp Physiol 316:R687–R696. https://doi.org/10.1152/ajpregu.00192.2018. (PMID: 10.1152/ajpregu.00192.2018308929136589606)
Godse NR, Khan N, Yochum ZA et al (2017) TMEM16A/ANO1 inhibits apoptosis via downregulation of Bim expression. Clin Cancer Res 23:7324–7332. https://doi.org/10.1158/1078-0432.CCR-17-1561. (PMID: 10.1158/1078-0432.CCR-17-1561288999695898434)
Gomez-Varela D, Zwick-Wallasch E, Knotgen H et al (2007) Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res 67:7343–7349. https://doi.org/10.1158/0008-5472.CAN-07-0107. (PMID: 10.1158/0008-5472.CAN-07-010717671204)
Gonzales CB, Kirma NB, De La Chapa JJ et al (2014) Vanilloids induce oral cancer apoptosis independent of TRPV1. Oral Oncol 50:437–447. https://doi.org/10.1016/j.oraloncology.2013.12.023. (PMID: 10.1016/j.oraloncology.2013.12.023244340674418484)
Goversen B, Jonsson MK, van den Heuvel NH et al (2019) The influence of hERG1a and hERG1b isoforms on drug safety screening in iPSC-CMs. Prog Biophys Mol Biol. https://doi.org/10.1016/j.pbiomolbio.2019.02.003.
Guasti L, Crociani O, Redaelli E et al (2008) Identification of a posttranslational mechanism for the regulation of hERG1 K+ channel expression and hERG1 current density in tumor cells. Mol Cell Biol 28:5043–5060. https://doi.org/10.1128/MCB.00304-08. (PMID: 10.1128/MCB.00304-08185594212519704)
Guo S, Chen Y, Pang C et al (2019) Matrine is a novel inhibitor of the TMEM16A chloride channel with antilung adenocarcinoma effects. J Cell Physiol 234:8698–8708. https://doi.org/10.1002/jcp.27529. (PMID: 10.1002/jcp.2752930370542)
Gurbi B, Brauswetter D, Varga A et al (2019) The potential impact of connexin 43 expression on Bcl-2 protein level and Taxane sensitivity in head and neck cancers-in vitro studies. Cancers (Basel) 11:967–969. https://doi.org/10.3390/cancers11121848. (PMID: 10.3390/cancers11121848)
Gururaja Rao S, Ponnalagu D, Patel NJ, Singh H (2018) Three decades of chloride intracellular channel proteins: from organelle to organ physiology. Curr Protoc Pharmacol 80:11.21.1–11.21.17. https://doi.org/10.1002/cpph.36. (PMID: 10.1002/cpph.36)
Haddad RI, Shin DM (2008) Recent advances in head and neck cancer. N Engl J Med 359:1143–1154. https://doi.org/10.1056/NEJMra0707975. (PMID: 10.1056/NEJMra070797518784104)
Hartung F, Stühmer W, Pardo LA (2011) Tumor cell-selective apoptosis induction through targeting of KV10.1 via bifunctional TRAIL antibody. Mol Cancer 10:109. https://doi.org/10.1186/1476-4598-10-109. (PMID: 10.1186/1476-4598-10-109218997423179451)
Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758. https://doi.org/10.1146/annurev.physiol.67.032003.154341. (PMID: 10.1146/annurev.physiol.67.032003.15434115709976)
Hashibe M, Brennan P, Chuang S-C et al (2009) Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev 18:541–550. https://doi.org/10.1158/1055-9965.EPI-08-0347. (PMID: 10.1158/1055-9965.EPI-08-0347191901583051410)
He B, Liu F, Ruan J et al (2012) Silencing TRPC1 expression inhibits invasion of CNE2 nasopharyngeal tumor cells. Oncol Rep 27:1548–1554. https://doi.org/10.3892/or.2012.1695. (PMID: 10.3892/or.2012.169522367186)
Hermida-Prado F, Menéndez S, Albornoz-Afanasiev P et al (2018) Distinctive expression and amplification of genes at 11q13 in relation to HPV status with impact on survival in head and neck cancer patients. J Clin Med 7:501. https://doi.org/10.3390/jcm7120501. (PMID: 10.3390/jcm71205016306931)
Herrmann S, Ninkovic M, Kohl T et al (2012) Cortactin controls surface expression of the voltage-gated potassium channel K(V)10.1. J Biol Chem 287:44151–44163. https://doi.org/10.1074/jbc.M112.372540. (PMID: 10.1074/jbc.M112.372540231444543531731)
Herzberg IM, Trudeau MC, Robertson GA (1998) Transfer of rapid inactivation and sensitivity to the class III antiarrhythmic drug E-4031 from HERG to M-eag channels. J Physiol 511:3–14. https://doi.org/10.1111/j.1469-7793.1998.003bi.x. (PMID: 10.1111/j.1469-7793.1998.003bi.x96791582231109)
Huang C, Li Y, Zhao W et al (2019) α2δ1 may be a potential marker for cancer stem cell in laryngeal squamous cell carcinoma. Cancer Biomark 24:97–107. https://doi.org/10.3233/CBM-181947. (PMID: 10.3233/CBM-181947304757576398553)
Ishimoto S, Wada K, Usami Y et al (2012) Differential expression of aquaporin 5 and aquaporin 3 in squamous cell carcinoma and adenoid cystic carcinoma. Int J Oncol 41:67–75. https://doi.org/10.3892/ijo.2012.1445. (PMID: 10.3892/ijo.2012.144522576684)
Jäger H, Dreker T, Buck A et al (2004) Blockage of intermediate-conductance Ca 2+ -activated K + channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65:630–638. https://doi.org/10.1124/mol.65.3.630. (PMID: 10.1124/mol.65.3.63014978241)
Jan C-I, Tsai M-H, Chiu C-F et al (2016) Fenofibrate suppresses oral tumorigenesis via reprogramming metabolic processes: potential drug repurposing for oral cancer. Int J Biol Sci 12:786–798. https://doi.org/10.7150/ijbs.13851. (PMID: 10.7150/ijbs.13851273134934910598)
Janiszewska J, Szaumkessel M, Kostrzewska-Poczekaj M et al (2015) Global miRNA expression profiling identifies miR-1290 as novel potential oncomiR in laryngeal carcinoma. PLoS One 10:e0144924. https://doi.org/10.1371/journal.pone.0144924. (PMID: 10.1371/journal.pone.0144924266941634692263)
Jentsch TJ, Lutter D, Planells-Cases R et al (2016) VRAC: molecular identification as LRRC8 heteromers with differential functions. Pflugers Arch 468(3):385–393. https://doi.org/10.1007/s00424-015-1766-5. (PMID: 10.1007/s00424-015-1766-526635246)
Jiang J, Li M-H, Inoue K et al (2007) Transient receptor potential melastatin 7-like current in human head and neck carcinoma cells: role in cell proliferation. Cancer Res 67:10929–10938. https://doi.org/10.1158/0008-5472.CAN-07-1121. (PMID: 10.1158/0008-5472.CAN-07-1121180068382398732)
Jung J, Cho K-J, Naji AK et al (2019) HRAS-driven cancer cells are vulnerable to TRPML1 inhibition. EMBO Rep 20(4):e46685. https://doi.org/10.15252/embr.201846685. (PMID: 10.15252/embr.201846685307870436446245)
Kaczmarek LK (2006) Policing the ball: a new potassium channel subunit determines inactivation rate. Neuron 49:642–644. https://doi.org/10.1016/j.neuron.2006.02.011. (PMID: 10.1016/j.neuron.2006.02.01116504937)
Kass RS (2005) The channelopathies: novel insights into molecular and genetic mechanisms of human disease. J Clin Invest 115:1986–1989. https://doi.org/10.1172/JCI26011. (PMID: 10.1172/JCI26011160750381180558)
Kulkarni S, Bill A, Godse NR et al (2017) TMEM16A/ANO1 suppression improves response to antibody-mediated targeted therapy of EGFR and HER2/ERBB2. Genes Chromosomes Cancer 56:460–471. https://doi.org/10.1002/gcc.22450. (PMID: 10.1002/gcc.22450281775585469289)
Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173. https://doi.org/10.1007/s00232-005-0781-4. (PMID: 10.1007/s00232-005-0781-416362504)
Kusayama M, Wada K, Nagata M et al (2011) Critical role of aquaporin 3 on growth of human esophageal and oral squamous cell carcinoma. Cancer Sci 102:1128–1136. https://doi.org/10.1111/j.1349-7006.2011.01927.x. (PMID: 10.1111/j.1349-7006.2011.01927.x21401805)
Lee SH, Rigas NK, Lee C-R et al (2016) Orai1 promotes tumor progression by enhancing cancer stemness via NFAT signaling in oral/oropharyngeal squamous cell carcinoma. Oncotarget 7:43239–43255. https://doi.org/10.18632/oncotarget.9755. (PMID: 10.18632/oncotarget.9755272592695190020)
Leemans CR, Braakhuis BJM, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11:9–22. https://doi.org/10.1038/nrc2982. (PMID: 10.1038/nrc298221160525)
Leemans CR, Snijders PJF, Brakenhoff RH (2018) The molecular landscape of head and neck cancer. Nat Rev Cancer 18:269–282. https://doi.org/10.1038/nrc.2018.11. (PMID: 10.1038/nrc.2018.1129497144)
Lehnerdt GF, Bachmann HS, Adamzik M et al (2015) AQP1, AQP5, Bcl-2 and p16 in pharyngeal squamous cell carcinoma. J Laryngol Otol 129:580–586. https://doi.org/10.1017/S002221511500119X. (PMID: 10.1017/S002221511500119X26074259)
Lew T-S, Chang C-S, Fang K-P et al (2004) The involvement of K(v)3.4 voltage-gated potassium channel in the growth of an oral squamous cell carcinoma cell line. J Oral Pathol Med 33:543–549. https://doi.org/10.1111/j.1600-0714.2004.00236.x. (PMID: 10.1111/j.1600-0714.2004.00236.x15357675)
Li H (2017) TRP channel classification. Adv Exp Med Biol 976:1–8. https://doi.org/10.1007/978-94-024-1088-4_1. (PMID: 10.1007/978-94-024-1088-4_128508308)
Li Q, Zhang B (2010) Expression of aquaporin-1 in nasopharyngeal cancer tissues. J Otolaryngol Head Neck Surg 39:511–515. https://doi.org/10.2310/7070.2010.090173. (PMID: 10.2310/7070.2010.09017320828513)
Li B-X, Teng S-F, Liu Z-F et al (2012) Ursolic acid activates chloride channels and decreases cell volume in poorly differentiated nasopharyngeal carcinoma cells. Sheng Li Xue Bao 64:673–680. (PMID: 23258331)
Li Y, Zhang J, Hong S (2014) ANO1 as a marker of oral squamous cell carcinoma and silencing ANO1 suppresses migration of human SCC-25 cells. Med Oral Patol Oral Cir Bucal 19:e313–e319. https://doi.org/10.4317/medoral.19076. (PMID: 10.4317/medoral.1907624316695)
Li H, Wang F, Fei Y et al (2018) Aberrantly expressed genes and miRNAs in human hypopharyngeal squamous cell carcinoma based on RNA-sequencing analysis. Oncol Rep 40:647–658. https://doi.org/10.3892/or.2018.6506. (PMID: 10.3892/or.2018.6506299165346072292)
Liu X, Cotrim A, Teos L et al (2013) Loss of TRPM2 function protects against irradiation-induced salivary gland dysfunction. Nat Commun 4:1515. https://doi.org/10.1038/ncomms2526. (PMID: 10.1038/ncomms252623443543)
Liu WJ, Xu L, Zhu XW et al (2017) Preliminary study on the role of voltage-gated sodium channel subtype Nav1.5 in lymph node metastasis of oral squamous cell carcinoma. Zhonghua Kou Qiang Yi Xue Za Zhi 52:188–193. https://doi.org/10.3760/cma.j.issn.1002-0098.2017.03.012. (PMID: 10.3760/cma.j.issn.1002-0098.2017.03.01228279058)
London B, Trudeau MC, Newton KP et al (1997) Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K + current. Circ Res 81:870–878. https://doi.org/10.1161/01.RES.81.5.870. (PMID: 10.1161/01.RES.81.5.8709351462)
Ma L, Yang Y, Yin Z et al (2017) Emodin suppresses the nasopharyngeal carcinoma cells by targeting the chloride channels. Biomed Pharmacother 90:615–625. https://doi.org/10.1016/j.biopha.2017.03.088. (PMID: 10.1016/j.biopha.2017.03.08828411554)
Mao JW, Wang LW, Jacob T et al (2005) Involvement of regulatory volume decrease in the migration of nasopharyngeal carcinoma cells. Cell Res 15:371–378. https://doi.org/10.1038/sj.cr.7290304. (PMID: 10.1038/sj.cr.729030415916723)
Mao J, Wang L, Fan A et al (2007) Blockage of volume-activated chloride channels inhibits migration of nasopharyngeal carcinoma cells. Cell Physiol Biochem 19:249–258. https://doi.org/10.1159/000100644. (PMID: 10.1159/00010064417495465)
Mao J, Chen L, Xu B et al (2008) Suppression of ClC-3 channel expression reduces migration of nasopharyngeal carcinoma cells. Biochem Pharmacol 75:1706–1716. https://doi.org/10.1016/j.bcp.2008.01.008. (PMID: 10.1016/j.bcp.2008.01.00818359479)
Marur S, D’Souza G, Westra WH, Forastiere AA (2010) HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol 11:781–789. https://doi.org/10.1016/S1470-2045(10)70017-6. (PMID: 10.1016/S1470-2045(10)70017-6204514555242182)
McLean GW, Carragher NO, Avizienyte E et al (2005) The role of focal-adhesion kinase in cancer – a new therapeutic opportunity. Nat Rev Cancer 5:505–515. https://doi.org/10.1038/nrc1647. (PMID: 10.1038/nrc164716069815)
Menéndez ST, Rodrigo JP, Allonca E et al (2010) Expression and clinical significance of the Kv3.4 potassium channel subunit in the development and progression of head and neck squamous cell carcinomas. J Pathol 221(4):402–410. https://doi.org/10.1002/path.2722. (PMID: 10.1002/path.272220593490)
Menéndez ST, Rodrigo JP, Álvarez-Teijeiro S et al (2012a) Role of HERG1 potassium channel in both malignant transformation and disease progression in head and neck carcinomas. Mod Pathol 25:1069–1078. https://doi.org/10.1038/modpathol.2012.63. (PMID: 10.1038/modpathol.2012.6322460808)
Menéndez ST, Villaronga MÁ, Rodrigo JP et al (2012b) Frequent aberrant expression of the human ether à go-go (hEAG1) potassium channel in head and neck cancer: pathobiological mechanisms and clinical implications. J Mol Med 90:1173–1184. https://doi.org/10.1007/s00109-012-0893-0. (PMID: 10.1007/s00109-012-0893-022466864)
Menéndez ST, Villaronga MÁ, Rodrigo JP et al (2016) HERG1A potassium channel is the predominant isoform in head and neck squamous cell carcinomas: evidence for regulation by epigenetic mechanisms. Sci Rep 6:19666. https://doi.org/10.1038/srep19666. (PMID: 10.1038/srep19666267857724726400)
Moreira J, Tobias A, O’Brien MP, Agulnik M (2017) Targeted therapy in head and neck cancer: an update on current clinical developments in epidermal growth factor receptor-targeted therapy and immunotherapies. Drugs 77:843–857. https://doi.org/10.1007/s40265-017-0734-0. (PMID: 10.1007/s40265-017-0734-028382569)
Nieh S, Jao S-W, Yang C-Y et al (2015) Regulation of tumor progression via the Snail-RKIP signaling pathway by nicotine exposure in head and neck squamous cell carcinoma. Head Neck 37:1712–1721. https://doi.org/10.1002/hed.23820. (PMID: 10.1002/hed.2382024986226)
Niemeyer BA, Mery L, Zawar C et al (2001) Ion channels in health and disease. 83rd Boehringer Ingelheim Fonds International Titisee Conference. EMBO Rep 2:568–573. https://doi.org/10.1093/embo-reports/kve145. (PMID: 10.1093/embo-reports/kve145114637391083959)
Okamoto Y, Ohkubo T, Ikebe T, Yamazaki J (2012) Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines. Int J Oncol 40:1431–1440. https://doi.org/10.3892/ijo.2012.1340. (PMID: 10.3892/ijo.2012.134022267123)
Ouadid-Ahidouch H, Roudbaraki M, Delcourt P et al (2004) Functional and molecular identification of intermediate-conductance Ca 2+ -activated K + channels in breast cancer cells: association with cell cycle progression. Am J Physiol Physiol 287:C125–C134. https://doi.org/10.1152/ajpcell.00488.2003. (PMID: 10.1152/ajpcell.00488.2003)
Ousingsawat J, Spitzner M, Puntheeranurak S et al (2007) Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clin Cancer Res 13:824–831. https://doi.org/10.1158/1078-0432.CCR-06-1940. (PMID: 10.1158/1078-0432.CCR-06-194017289873)
Ozawa H, Matsunaga T, Kamiya K et al (2007) Decreased expression of connexin-30 and aberrant expression of connexin-26 in human head and neck cancer. Anticancer Res 27:2189–2195. (PMID: 17695503)
Ozawa H, Mutai H, Matsunaga T et al (2009) Promoted cell proliferation by connexin 30 gene transfection to head-and-neck cancer cell line. Anticancer Res 29:1981–1985. (PMID: 19528455)
Pardo LA, Stühmer W (2008) Eag1: an emerging oncological target. Cancer Res 68:1611–1613. https://doi.org/10.1158/0008-5472.CAN-07-5710. (PMID: 10.1158/0008-5472.CAN-07-571018339837)
Pardo LA, Stühmer W (2014) The roles of K+ channels in cancer. Nat Rev Cancer 14:39–48. https://doi.org/10.1038/nrc3635. (PMID: 10.1038/nrc363524336491)
Pardo LA, del Camino D, Sánchez A et al (1999) Oncogenic potential of EAG K(+) channels. EMBO J 18:5540–5547. https://doi.org/10.1093/emboj/18.20.5540. (PMID: 10.1093/emboj/18.20.5540105232981171622)
Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh C-C (2003) Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol 471:157–164. https://doi.org/10.1016/S0014-2999(03)01825-9. (PMID: 10.1016/S0014-2999(03)01825-912826234)
Park YR, Chun JN, So I et al (2016) Data-driven analysis of TRP channels in cancer: linking variation in gene expression to clinical significance. Cancer Genomics Proteomics 13:83–90. (PMID: 26708603)
Pillozzi S, Brizzi MF, Bernabei PA et al (2007) VEGFR-1 (FLT-1), β1 integrin, and hERG K+ channel for a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome. Blood 110:1238–1250. https://doi.org/10.1182/blood-2006-02-003772. (PMID: 10.1182/blood-2006-02-00377217420287)
Pillozzi S, Accordi B, Rebora P et al (2014) Differential expression of hERG1A and hERG1B genes in pediatric acute lymphoblastic leukemia identifies different prognostic subgroups. Leukemia 28:1352–1355. https://doi.org/10.1038/leu.2014.26. (PMID: 10.1038/leu.2014.26244294994051215)
Planells-Cases R, Lutter D, Guyader C et al (2015) Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J 34(24):2993–3008. https://doi.org/10.15252/embj.201592409. (PMID: 10.15252/embj.201592409265304714687416)
Poroca DR, Pelis RM, Chappe VM (2017) ClC channels and transporters: structure, physiological functions, and implications in human chloride channelopathies. Front Pharmacol 8. https://doi.org/10.3389/fphar.2017.00151.
Prevarskaya N, Skryma R, Shuba Y (2010) Ion channels and the hallmarks of cancer. Trends Mol Med 16:107–121. https://doi.org/10.1016/j.molmed.2010.01.005. (PMID: 10.1016/j.molmed.2010.01.00520167536)
Priante AVM, Castilho EC, Kowalski LP (2011) Second primary tumors in patients with head and neck cancer. Curr Oncol Rep 13:132–137. https://doi.org/10.1007/s11912-010-0147-7. (PMID: 10.1007/s11912-010-0147-721234721)
Puljak L, Kilic G (2006) Emerging roles of chloride channels in human diseases. Biochim Biophys Acta 1762:404–413. https://doi.org/10.1016/j.bbadis.2005.12.008. (PMID: 10.1016/j.bbadis.2005.12.00816457993)
Puzzo L, Caltabiano R, Parenti R et al (2016) Connexin 43 (Cx43) expression in laryngeal squamous cell carcinomas: preliminary data on its possible prognostic role. Head Neck Pathol 10:292–297. https://doi.org/10.1007/s12105-016-0685-x. (PMID: 10.1007/s12105-016-0685-x267488034972757)
Qiao W, Lan XM, Ma HX et al (2019) Effects of salivary mg on head and neck carcinoma via TRPM7. J Dent Res 98:304–312. https://doi.org/10.1177/0022034518813359. (PMID: 10.1177/002203451881335930513244)
Reddy MGS, Dony E (2017) Role of aquaporins in oral cancer. J Cancer Res Ther 13:137–138. https://doi.org/10.4103/0973-1482.204848. (PMID: 10.4103/0973-1482.20484828508847)
Reddy RB, Bhat AR, James BL et al (2016) Meta-analyses of microarray datasets identifies ANO1 and FADD as prognostic markers of head and neck cancer. PLoS One 11:e0147409. https://doi.org/10.1371/journal.pone.0147409. (PMID: 10.1371/journal.pone.0147409268083194726811)
Rodrigo JP, García-Carracedo D, García LA et al (2009) Distinctive clinicopathological associations of amplification of the cortactin gene at 11q13 in head and neck squamous cell carcinomas. J Pathol 217:516–523. https://doi.org/10.1002/path.2462. (PMID: 10.1002/path.246218991334)
Rodrigo JP, Menéndez ST, Hermida-Prado F et al (2015) Clinical significance of Anoctamin-1 gene at 11q13 in the development and progression of head and neck squamous cell carcinomas. Sci Rep 5:15698. https://doi.org/10.1038/srep15698. (PMID: 10.1038/srep15698264988514620505)
Ruiz C, Martins JR, Rudin F et al (2012) Enhanced expression of ANO1 in head and neck squamous cell carcinoma causes cell migration and correlates with poor prognosis. PLoS One 7:e43265. https://doi.org/10.1371/journal.pone.0043265. (PMID: 10.1371/journal.pone.0043265229128413422276)
Sakakibara A, Sakakibara S, Kusumoto J et al (2017) Upregulated expression of transient receptor potential cation channel subfamily V receptors in mucosae of patients with oral squamous cell carcinoma and patients with a history of alcohol consumption or smoking. PLoS One 12:e0169723. https://doi.org/10.1371/journal.pone.0169723. (PMID: 10.1371/journal.pone.0169723280811855230781)
Scherl C, Schäfer R, Schlabrakowski A et al (2016) Nicotinic acetylcholine receptors in head and neck cancer and their correlation to tumor site and progression. J Otorhinolaryngol Relat Spec 78:151–158. https://doi.org/10.1159/000445781. (PMID: 10.1159/000445781)
Shao C, Sun W, Tan M et al (2011) Integrated, genome-wide screening for hypomethylated oncogenes in salivary gland adenoid cystic carcinoma. Clin Cancer Res 17:4320–4330. https://doi.org/10.1158/1078-0432.CCR-10-2992. (PMID: 10.1158/1078-0432.CCR-10-2992215512543131484)
Shimizu R, Ibaragi S, Eguchi T et al (2019) Nicotine promotes lymph node metastasis and cetuximab resistance in head and neck squamous cell carcinoma. Int J Oncol 54:283–294. https://doi.org/10.3892/ijo.2018.4631. (PMID: 10.3892/ijo.2018.463130431077)
Shiwarski DJ, Shao C, Bill A et al (2014) To “grow” or “go”: TMEM16A expression as a switch between tumor growth and metastasis in SCCHN. Clin Cancer Res 20:4673–4688. https://doi.org/10.1158/1078-0432.CCR-14-0363. (PMID: 10.1158/1078-0432.CCR-14-0363249195704160843)
Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6:963–968. https://doi.org/10.1002/1097-0142(195309)6:5<963::aid-cncr2820060515>3.0.co;2-q. (PMID: 10.1002/1097-0142(195309)6:5<963::aid-cncr2820060515>3.0.co;2-q13094644)
Su J, Xu T, Jiang G et al (2019) Gambogenic acid triggers apoptosis in human nasopharyngeal carcinoma CNE-2Z cells by activating volume-sensitive outwardly rectifying chloride channel. Fitoterapia 133:150–158. https://doi.org/10.1016/j.fitote.2019.01.002. (PMID: 10.1016/j.fitote.2019.01.00230654125)
Tan M, Shao C, Bishop JA et al (2014) Aquaporin-1 promoter hypermethylation is associated with improved prognosis in salivary gland adenoid cystic carcinoma. Otolaryngol Head Neck Surg 150:801–807. https://doi.org/10.1177/0194599814521569. (PMID: 10.1177/0194599814521569244937924318231)
Tian Y, Schreiber R, Kunzelmann K (2012) Anoctamins are a family of Ca2+-activated Cl- channels. J Cell Sci 125:4991–4998. https://doi.org/10.1242/jcs.109553. (PMID: 10.1242/jcs.10955322946059)
Verkman AS, Galietta LJV (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8:153–171. https://doi.org/10.1038/nrd2780. (PMID: 10.1038/nrd278019153558)
Villaronga MÁ, Hermida-Prado F, Granda-Díaz R et al (2018) Immunohistochemical expression of cortactin and focal adhesion kinase predicts recurrence risk and laryngeal cancer risk beyond histologic grading. Cancer Epidemiol Biomarkers Prev 27:805–813. https://doi.org/10.1158/1055-9965.EPI-17-1082. (PMID: 10.1158/1055-9965.EPI-17-108229654156)
Wallis SP, Stafford ND, Greenman J (2015) Clinical relevance of immune parameters in the tumor microenvironment of head and neck cancers. Head Neck 37:449–459. https://doi.org/10.1002/hed.23736. (PMID: 10.1002/hed.2373624803283)
Wang Z (2004) Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch 448:274–286. https://doi.org/10.1007/s00424-004-1258-5. (PMID: 10.1007/s00424-004-1258-515048575)
Wang J, Xiang M (2013) Targeting potassium channels Kv1.3 and K C a 3.1: routes to selective immunomodulators in autoimmune disorder treatment? Pharmacother J Hum Pharmacol Drug Ther 33:515–528. https://doi.org/10.1002/phar.1236. (PMID: 10.1002/phar.1236)
Wang L-W, Chen L-X, Jacob T (2004) ClC-3 expression in the cell cycle of nasopharyngeal carcinoma cells. Sheng Li Xue Bao 56:230–236. (PMID: 15127135)
Wang L, Ma W, Zhu L et al (2012) ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells. Am J Physiol Cell Physiol 303:C14–C23. https://doi.org/10.1152/ajpcell.00145.2011. (PMID: 10.1152/ajpcell.00145.201122496242)
Wang Z, Ling S, Rettig E et al (2015) Epigenetic screening of salivary gland mucoepidermoid carcinoma identifies hypomethylation of CLIC3 as a common alteration. Oral Oncol 51:1120–1125. https://doi.org/10.1016/j.oraloncology.2015.09.010. (PMID: 10.1016/j.oraloncology.2015.09.010264907964663116)
Wang H, Zou L, Ma K et al (2017) Cell-specific mechanisms of TMEM16A Ca2+-activated chloride channel in cancer. Mol Cancer 16:152. https://doi.org/10.1186/s12943-017-0720-x. (PMID: 10.1186/s12943-017-0720-x288932475594453)
Wanitchakool P, Wolf L, Koehl GE et al (2014) Role of anoctamins in cancer and apoptosis. Philos Trans R Soc Lond B Biol Sci 369:20130096. https://doi.org/10.1098/rstb.2013.0096. (PMID: 10.1098/rstb.2013.0096244937443917350)
Wei Y, Lin N, Zuo W et al (2015) Ethanol promotes cell migration via activation of chloride channels in nasopharyngeal carcinoma cells. Alcohol Clin Exp Res 39:1341–1351. https://doi.org/10.1111/acer.12782. (PMID: 10.1111/acer.1278226148226)
Whiteside TL (2017) Targeting adenosine in cancer immunotherapy: a review of recent progress. Expert Rev Anticancer Ther 17:527–535. https://doi.org/10.1080/14737140.2017.1316197. (PMID: 10.1080/14737140.2017.1316197283996726702668)
Wong AMG, Kong KL, Chen L et al (2013) Characterization of CACNA2D3 as a putative tumor suppressor gene in the development and progression of nasopharyngeal carcinoma. Int J Cancer 133:2284–2295. https://doi.org/10.1002/ijc.28252. (PMID: 10.1002/ijc.2825223649311)
Wu K, Shen B, Jiang F et al (2016) TRPP2 enhances metastasis by regulating epithelial-mesenchymal transition in laryngeal squamous cell carcinoma. Cell Physiol Biochem 39:2203–2215. https://doi.org/10.1159/000447914. (PMID: 10.1159/00044791427832627)
Wu J, Guo J, Yang Y et al (2017) Tumor necrosis factor α accelerates Hep-2 cells proliferation by suppressing TRPP2 expression. Sci China Life Sci 60:1251–1259. https://doi.org/10.1007/s11427-016-9030-5. (PMID: 10.1007/s11427-016-9030-528667515)
Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001. https://doi.org/10.1038/nrd2983. (PMID: 10.1038/nrd2983199494022790170)
Xu B, Mao J, Wang L et al (2010) ClC-3 chloride channels are essential for cell proliferation and cell cycle progression in nasopharyngeal carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 42:370–380. https://doi.org/10.1093/abbs/gmq031. (PMID: 10.1093/abbs/gmq031)
Xue H, Lu J, Yuan R et al (2016) Knockdown of CLIC4 enhances ATP-induced HN4 cell apoptosis through mitochondrial and endoplasmic reticulum pathways. Cell Biosci 6:5. https://doi.org/10.1186/s13578-016-0070-1. (PMID: 10.1186/s13578-016-0070-1268166154727302)
Yang Z, Schumaker LM, Egorin MJ et al (2006) Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res 12:5817–5825. https://doi.org/10.1158/1078-0432.CCR-06-1037. (PMID: 10.1158/1078-0432.CCR-06-103717020989)
Yang L, Ye D, Ye W et al (2011) ClC-3 is a main component of background chloride channels activated under isotonic conditions by autocrine ATP in nasopharyngeal carcinoma cells. J Cell Physiol 226:2516–2526. https://doi.org/10.1002/jcp.22596. (PMID: 10.1002/jcp.2259621792908)
Yang X, Zhu L, Lin J et al (2015) Cisplatin activates volume-sensitive like chloride channels via purinergic receptor pathways in nasopharyngeal carcinoma cells. J Membr Biol 248:19–29. https://doi.org/10.1007/s00232-014-9724-2. (PMID: 10.1007/s00232-014-9724-225236172)
Ye D, Luo H, Lai Z et al (2016) ClC-3 chloride channel proteins regulate the cell cycle by up-regulating cyclin D1-CDK4/6 through suppressing p21/p27 expression in nasopharyngeal carcinoma cells. Sci Rep 6:30276. https://doi.org/10.1038/srep30276. (PMID: 10.1038/srep30276274519454959003)
Yin MZ, Park S-W, Kang TW et al (2016) Activation of K + channel by 1-EBIO rescues the head and neck squamous cell carcinoma cells from Ca 2+ ionophore-induced cell death. Korean J Physiol Pharmacol 20:25. https://doi.org/10.4196/kjpp.2016.20.1.25. (PMID: 10.4196/kjpp.2016.20.1.2526807020)
Yu MC, Yuan J-M (2006) Nasopharyngeal cancer. In: Cancer epidemiology and prevention. Oxford University Press, New York, pp 620–626. (PMID: 10.1093/acprof:oso/9780195149616.003.0031)
Yu WF, Zhao YL, Wang K, Dong MM (2009) Inhibition of cell proliferation and arrest of cell cycle progression by blocking chloride channels in human laryngeal cancer cell line Hep-2. Neoplasma 56:224–229. https://doi.org/10.4149/neo&#95;2009&#95;03&#95;224. (PMID: 10.4149/neo_2009_03_22419309225)
Yu W, Wang P, Ma H et al (2014) Suppression of T-type Ca2+ channels inhibited human laryngeal squamous cell carcinoma cell proliferation running title: roles of T-type Ca2+ channels in LSCC cell proliferation. Clin Lab 60:621–628. (PMID: 10.7754/Clin.Lab.2013.130614)
Zhang ZF, Morgenstern H, Spitz MR et al (2000) Environmental tobacco smoking, mutagen sensitivity, and head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 9:1043–1049. (PMID: 11045786)
Zhang H, Zhu L, Zuo W et al (2013) The ClC-3 chloride channel protein is a downstream target of cyclin D1 in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol 45:672–683. https://doi.org/10.1016/j.biocel.2012.12.015. (PMID: 10.1016/j.biocel.2012.12.01523270726)
Zhang H, Li H, Liu E et al (2014) The AQP-3 water channel and the ClC-3 chloride channel coordinate the hypotonicity-induced swelling volume in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol 57:96–107. https://doi.org/10.1016/j.biocel.2014.10.014. (PMID: 10.1016/j.biocel.2014.10.01425450461)
Zhang J, Mao W, Dai Y et al (2019) Voltage-gated sodium channel Nav1.5 promotes proliferation, migration and invasion of oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 51:562–570. https://doi.org/10.1093/abbs/gmz044. (PMID: 10.1093/abbs/gmz044)
Zhao J, Wei X-L, Jia Y-S, Zheng J-Q (2008) Silencing of herg gene by shRNA inhibits SH-SY5Y cell growth in vitro and in vivo. Eur J Pharmacol 579:50–57. https://doi.org/10.1016/j.ejphar.2007.10.008. (PMID: 10.1016/j.ejphar.2007.10.00817976575)
Zhao L-Y, Xu W-L, Xu Z-Q et al (2016) The overexpressed functional transient receptor potential channel TRPM2 in oral squamous cell carcinoma. Sci Rep 6:38471. https://doi.org/10.1038/srep38471. (PMID: 10.1038/srep38471280089295180100)
Zhou Z, Vorperian VR, Gong Q et al (1999) Block of HERG potassium channels by the antihistamine astemizole and its metabolites desmethylastemizole and norastemizole. J Cardiovasc Electrophysiol 10:836–843. https://doi.org/10.1111/j.1540-8167.1999.tb00264.x. (PMID: 10.1111/j.1540-8167.1999.tb00264.x10376921)
Zhou C, Tang X, Xu J et al (2018) Opening of the CLC-3 chloride channel induced by dihydroartemisinin contributed to early apoptotic events in human poorly differentiated nasopharyngeal carcinoma cells. J Cell Biochem 119:9560–9572. https://doi.org/10.1002/jcb.27274. (PMID: 10.1002/jcb.2727430171707)
Zhu L, Yang H, Zuo W et al (2012) Differential expression and roles of volume-activated chloride channels in control of growth of normal and cancerous nasopharyngeal epithelial cells. Biochem Pharmacol 83:324–334. https://doi.org/10.1016/j.bcp.2011.11.007. (PMID: 10.1016/j.bcp.2011.11.00722108225)
فهرسة مساهمة: Keywords: Cancer risk marker; Head and neck cancers; Ion channel; Prognostic marker; Squamous cell carcinoma; Therapeutic target
المشرفين على المادة: 0 (Biomarkers, Tumor)
0 (Ion Channels)
تواريخ الأحداث: Date Created: 20200814 Date Completed: 20220104 Latest Revision: 20220531
رمز التحديث: 20221213
DOI: 10.1007/112_2020_38
PMID: 32789787
قاعدة البيانات: MEDLINE
الوصف
تدمد:0303-4240
DOI:10.1007/112_2020_38