دورية أكاديمية

Eugenia uniflora fruit extract exerts neuroprotective effect on chronic unpredictable stress-induced behavioral and neurochemical changes.

التفاصيل البيبلوغرافية
العنوان: Eugenia uniflora fruit extract exerts neuroprotective effect on chronic unpredictable stress-induced behavioral and neurochemical changes.
المؤلفون: Flores NP; Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil., Bona NP; Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil., Luduvico KP; Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil., Cardoso JS; Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil., Soares MSP; Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil., Gamaro GD; Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil., Spanevello RM; Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil., Lencina CL; Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil., Gazal M; Programa de Biologia Celular e Molecular-Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil., Stefanello FM; Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil.
المصدر: Journal of food biochemistry [J Food Biochem] 2020 Oct; Vol. 44 (10), pp. e13442. Date of Electronic Publication: 2020 Aug 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 7706045 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1745-4514 (Electronic) Linking ISSN: 01458884 NLM ISO Abbreviation: J Food Biochem Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: 2008- : Hoboken, NJ : Wiley
Original Publication: Westport, Conn. : Food & Nutrition Press
مستخلص: The aim of the current study was to evaluate the effect of chronic administration of Eugenia uniflora fruit extract on behavioral parameters, oxidative stress markers, and acetylcholinesterase activity in an animal model of depression, which was induced by chronic unpredictable stress (CUS). Mice were divided into six groups as follows: control/vehicle (water), control/fluoxetine (20 mg/kg), control/extract (200 mg/kg), CUS/vehicle, CUS/fluoxetine (20 mg/kg), and CUS/extract (200 mg/kg). Animals of the CUS group were exposed to a series of stressors for a period of 21 days. Vehicle, fluoxetine, and hydroalcoholic extract were administered daily by gavage. Results showed that E. uniflora treatment: (a) prevented the depressant-like effect induced by CUS; (b) regulated the activity of acetylcholinesterase; (c) reduced oxidative damage to lipids and reactive oxygen species production, in the prefrontal cortex and hippocampus; and (d) prevented the reduction of glutathione peroxidase in the hippocampus of animals subjected to CUS protocol. Taken together, our findings suggested that E. uniflora extract exerts a neuroprotective effect by preventing oxidative damage and decreasing CUS-induced acetylcholinesterase activity, thus, ameliorating depressive-type behavior. PRACTICAL APPLICATIONS: E. uniflora fruit extract revealed an antidepressant-like effect and prevented the oxidative damage as well as cholinergic alterations caused by chronic stress in mice. Therefore, we believe that the results obtained in this study can be used to develop an alternative therapy for the management of depressive disorders.
(© 2020 Wiley Periodicals LLC.)
References: Aksenov, M. Y., & Markesbery, W. R. (2001). Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer's disease. Neuroscience Letters, 302(2–3), 141–145. https://doi.org/10.1016/s0304‐3940(01)01636‐6.
Ali, S. F., LeBel, C. P., & Bondy, S. C. (1992). Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology, 13(3), 637–648.
Anwar, J., Spanevello, R. M., Thomé, G., Stefanello, N., Schmatz, R., Gutierres, J., … Schetinger, M. R. C. (2012). Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats. Pharmacology Biochemistry and Behavior, 103(2), 386–394. https://doi.org/10.1016/j.pbb.2012.09.006.
Berton, O., & Nestler, E. J. (2006). New approaches to antidepressant drug discovery: Beyond monoamines. Nature Reviews Neuroscience, 7(2), 137–151. https://doi.org/10.1038/nrn1846.
Bordignon, C. L. Jr., Francescatto, V., Nienow, A. A., Calvete, E., & Reginatto, F. H. (2009). Influência do pH da solução extrativa no teor de antocianinas em frutos de morango. Ciência e Tecnologia de Alimentos, 29(1), 183–188. https://doi.org/10.1590/S0101‐20612009000100028.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999.
Dagytė, G., Den Boer, J. A., & Trentani, A. (2011). The cholinergic system and depression. Behavioural Brain Research, 221(2), 574–582. https://doi.org/10.1016/j.bbr.2010.02.023.
Dagytė, G., Van der Zee, E. A., Postema, F., Luiten, P. G. M., Den Boer, J. A., Trentani, A., & Meerlo, P. (2009). Chronic but not acute foot‐shock stress leads to temporary suppression of cell proliferation in rat hippocampus. Neuroscience, 162(4), 904–913. https://doi.org/10.1016/j.neuroscience.2009.05.053.
Deacon, R. M., & Rawlins, J. N. P. (2005). Hippocampal lesions, species‐typical behaviours and anxiety in mice. Behavioural Brain Research, 156(2), 241–249. https://doi.org/10.1016/j.bbr.2004.05.027.
Denardin, C. C., Hirsch, G. E., da Rocha, R. F., Vizzotto, M., Henriques, A. T., Moreira, J. C. F., … Emanuelli, T. (2015). Antioxidant capacity and bioactive compounds of four Brazilian native fruits. Journal of Food and Drug Analysis, 23(3), 387–398. https://doi.org/10.1016/j.jfda.2015.01.006.
Ellman, G. L., Courtney, K. D., Andres, V. Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006‐2952(61)90145‐9.
Epstein, I., Szpindel, I., & Katzman, M. A. (2014). Pharmacological approaches to manage persistent symptoms of major depressive disorder: Rationale and therapeutic strategies. Psychiatry Research, 220(1), S15–S33. https://doi.org/10.1016/S0165‐1781(14)70003‐4.
Franco, I. J., & Fontana, V. L. (2004). Ervas e plantas: a medicina dos simples (9th ed., 208 p.). Erechim: Livraria Vida.
Fu, W., Xie, H., Laudon, M., Zhou, S., Tian, S., & You, Y. (2016). Piromelatine ameliorates memory deficits associated with chronic mild stress‐induced anhedonia in rats. Psychopharmacology, 233(12), 2229–2239. https://doi.org/10.1007/s00213‐016‐4272‐3.
Gamaro, G. D., Manoli, L. P., Torres, I. L. S., Silveira, R., & Dalmaz, C. (2003). Effects of chronic variate stress on feeding behavior and on monoamine levels in different rat brain structures. Neurochemistry International, 42(2), 107–114. https://doi.org/10.1016/s0197‐0186(02)00080‐3.
Gamaro, G. D., Prediger, M. E., Lopes, J., Bassani, M. G., & Dalmaz, C. (2008). Fluoxetine alters feeding behavior and leptin levels in chronically‐stressed rats. Pharmacology Biochemistry and Behavior, 90(3), 312–317. https://doi.org/10.1016/j.pbb.2008.03.005.
Gaynes, B. N., Warden, D., Trivedi, M. H., Wisniewski, S. R., Fava, M., & Rush, A. J. (2009). What did STAR* D teach us? Results from a large‐scale, practical, clinical trial for patients with depression. Psychiatric Services, 60(11), 1439–1445. https://doi.org/10.1176/ps.2009.60.11.1439.
Gazal, M., Ortmann, C. F., Martins, F. A., Streck, E. L., Quevedo, J., de Campos, A. M., … Lencina, C. L. (2014). Antidepressant‐like effects of aqueous extract from Cecropia pachystachya leaves in a mouse model of chronic unpredictable stress. Brain Research Bulletin, 108, 10–17. https://doi.org/10.1016/j.brainresbull.2014.07.007.
Kaster, M. P., Machado, N. J., Silva, H. B., Nunes, A., Ardais, A. A., Santana, M., … Cunha, R. A. (2015). Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proceedings of the National Academy of Sciences of the United States of America, 112(25), 7833–7838. https://doi.org/10.1073/pnas.1423088112.
Li, S., Wang, C., Wang, M., Li, W., Matsumoto, K., & Tang, Y. (2007). Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sciences, 80(15), 1373–1381. https://doi.org/10.1016/j.lfs.2006.12.027.
Liang, S., Huang, R., Lin, X., Huang, J., Huang, Z., & Liu, H. (2012). Effects of Yulangsan polysaccharide on monoamine neurotransmitters, adenylate cyclase activity and brain‐derived neurotrophic factor expression in a mouse model of depression induced by unpredictable chronic mild stress. Neural Regeneration Research, 7(3), 191. https://doi.org/10.3969/j.issn.1673‐5374.2012.03.006.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.
Machado, D. G., Cunha, M. P., Neis, V. B., Balen, G. O., Colla, A., Grando, J., … Rodrigues, A. L. S. (2012). Fluoxetine reverses depressive‐like behaviors and increases hippocampal acetylcholinesterase activity induced by olfactory bulbectomy. Pharmacology Biochemistry and Behavior, 103(2), 220–229. https://doi.org/10.1016/j.pbb.2012.08.024.
Maes, M., Galecki, P., Chang, Y. S., & Berk, M. (2011). A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 35(3), 676–692. https://doi.org/10.1016/j.pnpbp.2010.05.004.
Massaad, C. A., & Klann, E. (2011). Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxidants & Redox Signaling, 14(10), 2013–2054. https://doi.org/10.1089/ars.2010.3208.
McGonigle, P. (2013). Animal models of CNS disorders. Biochemical Pharmacology, 87(1), 140–149. https://doi.org/10.1016/j.bcp.2013.06.016.
Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10), 3170–3175.
Nollet, M., Gaillard, P., Minier, F., Tanti, A., Belzung, C., & Leman, S. (2011). Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology, 61(1–2), 336–346. https://doi.org/10.1016/j.neuropharm.2011.04.022.
Nollet, M., Guisquet, A.‐M. L., & Belzung, C. (2013). Models of depression: Unpredictable chronic mild stress in mice. Current Protocols in Pharmacology, Chapter 5: Unit 5.65, (Supplement 61). https://doi.org/10.1002/0471141755.ph0565s61.
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003‐2697(79)90738‐3.
Oliveira, P. S., Chaves, V. C., Bona, N. P., Soares, M. S. P., Cardoso, J. D. S., Vasconcellos, F. A., … Stefanello, F. M. (2017). Eugenia uniflora fruit (red type) standardized extract: A potential pharmacological tool to diet‐induced metabolic syndrome damage management. Biomedicine & Pharmacotherapy, 92, 935–941. https://doi.org/10.1016/j.biopha.2017.05.131.
Rada, P., Colasante, C., Skirzewski, M., Hernandez, L., & Hoebel, B. (2006). Behavioral depression in the swim test causes a biphasic, long‐lasting change in accumbens acetylcholine release, with partial compensation by acetylcholinesterase and muscarinic‐1 receptors. Neuroscience, 141(1), 67–76. https://doi.org/10.1016/j.neuroscience.2006.03.043.
Rinwa, P., & Kumar, A. (2014). Modulation of nitrergic signaling pathway by American ginseng attenuates chronic unpredictable stress‐induced cognitive impairment, neuroinflammation, and biochemical alterations. Naunyn‐Schmiedeberg’s Archives of Pharmacology, 387(2), 129–141. https://doi.org/10.1007/s00210‐013‐0925‐5.
Serrano, F., & Klann, E. (2004). Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Research Reviews, 3(4), 431–443. https://doi.org/10.1016/j.arr.2004.05.002.
Siwek, M., Sowa‐Kućma, M., Dudek, D., Styczeń, K., Szewczyk, B., Kotarska, K., … Nowak, G. (2013). Oxidative stress markers in affective disorders. Pharmacology Reports, 65(6), 1558–1571. https://doi.org/10.1016/S1734‐1140(13)71517‐2.
Victoria, F. N., de Siqueira, B. A., Savegnago, L., & Lenardão, E. J. (2013). Involvement of serotoninergic and adrenergic systems on the antidepressant‐like effect of E. uniflora L. leaves essential oil and further analysis of its antioxidant activity. Neuroscience Letters, 544, 105–109. https://doi.org/10.1016/j.neulet.2013.03.054.
Victoria, F. N., Lenardão, E. J., Savegnago, L., Perin, G., Jacob, R. G., Alves, D., … Nascente, P. D. S. (2012). Essential oil of the leaves of Eugenia uniflora L.: Antioxidant and antimicrobial properties. Food and Chemical Toxicology, 50(8), 2668–2674. https://doi.org/10.1016/j.fct.2012.05.002.
Willner, P., Muscat, R., & Papp, M. (1992). Chronic mild stress‐induced anhedonia: A realistic animal model of depression. Neuroscience & Biobehavioral Reviews, 16(4), 525–534. https://doi.org/10.1016/s0149‐7634(05)80194‐0.
Winter, A. N., Ross, E. K., Khatter, S., Miller, K., & Linseman, D. A. (2017). Chemical basis for the disparate neuroprotective effects of the anthocyanins, callistephin and kuromanin, against nitrosative stress. Free Radical Biology & Medicine, 103, 23–34. https://doi.org/10.1016/j.freeradbiomed.2016.12.012.
Yalcin, I., Belzung, C., & Surget, A. (2008). Mouse strain differences in the unpredictable chronic mild stress: A four‐antidepressant survey. Behavioural Brain Research, 193, 140–143. https://doi.org/10.1016/j.bbr.2008.04.021.
Zafir, A., & Banu, N. (2009). Induction of oxidative stress by restraint stress and corticosterone treatments in rats. International Journal of Biochemistry and Biophysics, 46, 53–58.
Zhang, Y.‐Q., Wang, X.‐B., Xue, R.‐R., Gao, X.‐X., & Li, W. (2019). Ginsenoside Rg1 attenuates chronic unpredictable mild stress‐induced depressive‐like effect via regulating NF‐κB/NLRP3 pathway in rats. NeuroReport, 30(13), 893–900. https://doi.org/10.1097/WNR.0000000000001302.
فهرسة مساهمة: Keywords: acetylcholinesterase; depression; native Brazilian fruit; neuroprotective; oxidative damage
تواريخ الأحداث: Date Created: 20200818 Latest Revision: 20240805
رمز التحديث: 20240806
DOI: 10.1111/jfbc.13442
PMID: 32803896
قاعدة البيانات: MEDLINE
الوصف
تدمد:1745-4514
DOI:10.1111/jfbc.13442