دورية أكاديمية

Geometric principles underlying the proliferation of a model cell system.

التفاصيل البيبلوغرافية
العنوان: Geometric principles underlying the proliferation of a model cell system.
المؤلفون: Wu LJ; Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK. l.j.wu@ncl.ac.uk., Lee S; Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.; Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK., Park S; Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.; Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK., Eland LE; Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.; Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK., Wipat A; Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.; Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK., Holden S; Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK., Errington J; Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK. jeff.errington@ncl.ac.uk.
المصدر: Nature communications [Nat Commun] 2020 Aug 18; Vol. 11 (1), pp. 4149. Date of Electronic Publication: 2020 Aug 18.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Bacillus subtilis/*growth & development , Cell Division/*physiology , Chromosome Segregation/*physiology , L Forms/*growth & development , Lab-On-A-Chip Devices/*microbiology, Bacillus subtilis/cytology ; Bacillus subtilis/physiology ; Cell Wall/physiology ; Chromosomes, Bacterial/metabolism ; Chromosomes, Bacterial/physiology ; L Forms/cytology ; L Forms/physiology ; Models, Biological
مستخلص: Many bacteria can form wall-deficient variants, or L-forms, that divide by a simple mechanism that does not require the FtsZ-based cell division machinery. Here, we use microfluidic systems to probe the growth, chromosome cycle and division mechanism of Bacillus subtilis L-forms. We find that forcing cells into a narrow linear configuration greatly improves the efficiency of cell growth and chromosome segregation. This reinforces the view that L-form division is driven by an excess accumulation of surface area over volume. Cell geometry also plays a dominant role in controlling the relative positions and movement of segregating chromosomes. Furthermore, the presence of the nucleoid appears to influence division both via a cell volume effect and by nucleoid occlusion, even in the absence of FtsZ. Our results emphasise the importance of geometric effects for a range of crucial cell functions, and are of relevance for efforts to develop artificial or minimal cell systems.
References: Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 3, 120143 (2013). (PMID: 233033083603455)
Egan, A. J., Cleverley, R. M., Peters, K., Lewis, R. J. & Vollmer, W. Regulation of bacterial cell wall growth. FEBS J. 284, 851–867 (2017). (PMID: 27862967)
Rajagopal, M. & Walker, S. Envelope structures of gram-positive bacteria. Curr. Top. Microbiol. Immunol. 404, 1–44 (2017). (PMID: 269198635002265)
Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006). (PMID: 1649758816497588)
Rojas, E. R. & Huang, K. C. Regulation of microbial growth by turgor pressure. Curr. Opin. Microbiol. 42, 62–70 (2018). (PMID: 29125939)
Errington, J. & Wu, L. J. Cell cycle machinery in Bacillus subtilis. Subcell. Biochem. 84, 67–101 (2017). (PMID: 285005236126333)
Zhao, H., Patel, V., Helmann, J. D. & Dörr, T. Don’t let sleeping dogmas lie: new views of peptidoglycan synthesis and its regulation. Mol. Microbiol. 106, 847–860 (2017). (PMID: 289756725720918)
Allan, E. J., Hoischen, C. & Gumpert, J. Bacterial L-forms. Adv. Appl. Microbiol. 68, 1–39 (2009). (PMID: 19426852)
Errington J., Mickiewicz K., Kawai Y., Wu L. J. L-form bacteria, chronic diseases and the origins of life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, https://doi.org/10.1098/rstb.2015.0494 (2016).
Domingue, G. J. Sr. & Woody, H. B. Bacterial persistence and expression of disease. Clin. Microbiol. Rev. 10, 320–344 (1997). (PMID: 9105757172922)
Domingue, G. J. Demystifying pleomorphic forms in persistence and expression of disease: Are they bacteria, and is peptidoglycan the solution? Discov. Med. 10, 234–246 (2010). (PMID: 20875345)
Mercier, R., Kawai, Y. & Errington, J. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152, 997–1007 (2013). (PMID: 23452849)
Kawai, Y. et al. Cell growth of wall-free L-form bacteria is limited by oxidative damage. Curr. Biol. 25, 1613–1618 (2015). (PMID: 260518914510147)
Kawai, Y. et al. Crucial role for central carbon metabolism in the bacterial L-form switch and killing by β-lactam antibiotics. Nat. Microbiol. 4, 1716–1726 (2019). (PMID: 312855866755032)
Mercier R., Kawai Y., Errington J. General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. eLife 3, https://doi.org/10.7554/eLife.04629 (2014).
Leaver, M., Dominguez-Cuevas, P., Coxhead, J. M., Daniel, R. A. & Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 457, 849–853 (2009). (PMID: 19212404)
Studer, P. et al. Proliferation of Listeria monocytogenes L-form cells by formation of internal and external vesicles. Nat. Commun. 7, 13631 (2016). (PMID: 278767985123018)
Svetina, S. Vesicle budding and the origin of cellular life. Chemphyschem 10, 2769–2776 (2009). (PMID: 19774545)
Peterlin, P., Arrigler, V., Kogej, K., Svetina, S. & Walde, P. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Chem. Phys. Lipids 159, 67–76 (2009). (PMID: 19477312)
Briers Y., Walde P., Schuppler M., Loessner M. J. How did bacterial ancestors reproduce? Lessons from L-form cells and giant lipid vesicles: multiplication similarities between lipid vesicles and L-form bacteria. Bioessays 34, 1078–1084 (2012). (PMID: 23108858)
Chen, I. A. Cell division: breaking up is easy to do. Curr. Biol. 19, R327–R328 (2009). (PMID: 19409280)
Blain, J. C. & Szostak, J. W. Progress toward synthetic cells. Annu. Rev. Biochem. 83, 615–640 (2014). (PMID: 24606140)
Caspi, Y. & Dekker, C. Divided we stand: splitting synthetic cells for their proliferation. Syst. Synth. Biol. 8, 249–269 (2014). (PMID: 251363874127174)
Hutchison C. A., 3rd, et al. Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016).
Jun, S. & Wright, A. Entropy as the driver of chromosome segregation. Nat. Rev. Microbiol. 8, 600–607 (2010). (PMID: 206348103148256)
Wu, F. et al. Cell boundary confinement sets the size and position of the E. coli chromosome. Curr. Biol. 29, 2131–2144.e2134 (2019). (PMID: 311553537050463)
Kandler, G. & Kandler, O. Studies on morphology and multiplication of pleuropneumonia-like organisms and on bacterial L-phase, I. Light microscopy. Arch. Mikrobiol. 21, 178–201 (1954). (PMID: 14350641)
Kohler, P. & Marahiel, M. A. Association of the histone-like protein HBsu with the nucleoid of Bacillus subtilis. J. Bacteriol. 179, 2060–2064 (1997). (PMID: 9068655178933)
Moffitt, J. R., Lee, J. B. & Cluzel, P. The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. Lab a Chip 12, 1487–1494 (2012).
Eland L., Wipat A., Lee S., Park S., Wu L. Microfluidics for Bacterial Imaging. In Methods in Microbiology (ed. Harwood, C). 43, 69–111. https://doi.org/10.1016/bs.mim.2016.10.002 (2016).
Sharpe, M. E., Hauser, P. M., Sharpe, R. G. & Errington, J. Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of the cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J. Bacteriol. 180, 547–555 (1998). (PMID: 9457856106920)
Valkenburg, J. A. & Woldringh, C. L. Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry. J. Bacteriol. 160, 1151–1157 (1984). (PMID: 6389508215833)
Mulder, E. & Woldringh, C. L. Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA. J. Bacteriol. 171, 4303–4314 (1989). (PMID: 2666394210205)
Woldringh, C. L. et al. Role of the nucleoid in the toporegulation of division. Res. Microbiol. 141, 39–49 (1990). (PMID: 2194248)
Wu, L. J. & Errington, J. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915–925 (2004). (PMID: 15210112)
Bernhardt, T. G. & de Boer, P. A. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. Mol. Cell 18, 555–564 (2005). (PMID: 159169624428309)
Rodrigues, C. D. & Harry, E. J. The Min system and nucleoid occlusion are not required for identifying the division site in Bacillus subtilis but ensure its efficient utilization. PLoS Genet. 8, e1002561 (2012). (PMID: 224576343310732)
Kaimer, C., Gonzalez-Pastor, J. E. & Graumann, P. L. SpoIIIE and a novel type of DNA translocase, SftA, couple chromosome segregation with cell division in Bacillus subtilis. Mol. Microbiol. 74, 810–825 (2009). (PMID: 19818024)
Terasawa, H., Nishimura, K., Suzuki, H., Matsuura, T. & Yomo, T. Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. Proc. Natl Acad. Sci. USA 109, 5942–5947 (2012). (PMID: 22474340)
Yu, Y. & Granick, S. Pearling of lipid vesicles induced by nanoparticles. J. Am. Chem. Soc. 131, 14158–14159 (2009). (PMID: 19775107)
Brown, N. C. Inhibition of bacterial DNA replication by 6-(p-hydroxyphenylazo)-uracil: differential effect on repair and semi-conservative synthesis in Bacillus subtilis. J. Mol. Biol. 59, 1–16 (1971). (PMID: 4997657)
Tarantino, P. M. Jr., Zhi, C., Wright, G. E. & Brown, N. C. Inhibitors of DNA polymerase III as novel antimicrobial agents against gram-positive eubacteria. Antimicrob. Agents Chemother. 43, 1982–1987 (1999). (PMID: 1042892389401)
Gumpert, J. & Taubeneck, U. Characteristic properties and biological significance of stable protoplast type L-forms. Exp. Suppl. 46, 227–241 (1983).
Hussain S., et al. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 7, https://doi.org/10.7554/eLife.32471 (2018).
Young, K. D. The selective value of bacterial shape. Microbiol Mol. Biol. Rev. 70, 660–703 (2006). (PMID: 169599651594593)
Kas, J. & Sackmann, E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys. J. 60, 825–844 (1991). (PMID: 17424551260134)
Bendezú, F. O. & de Boer, P. A. Conditional lethality, division defects, membrane involution, and endocytosis in mre and mrd shape mutants of Escherichia coli. J. Bacteriol. 190, 1792–1811 (2008). (PMID: 17993535)
Ptacin, J. L. et al. A spindle-like apparatus guides bacterial chromosome segregation. Nat. Cell Biol. 12, 791–798 (2010). (PMID: 206575943205914)
Toro, E., Hong, S. H., McAdams, H. H. & Shapiro, L. Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc. Natl Acad. Sci. USA 105, 15435–15440 (2008). (PMID: 18824683)
Wu, L. J. & Errington, J. RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol. Microbiol. 49, 1463–1475 (2003). (PMID: 12950914)
Shebelut, C. W., Guberman, J. M., van Teeffelen, S., Yakhnina, A. A. & Gitai, Z. Caulobacter chromosome segregation is an ordered multistep process. Proc. Natl Acad. Sci. USA 107, 14194–14198 (2010). (PMID: 20660743)
Lim, H. C. et al. Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. eLife 3, e02758 (2014). (PMID: 248597564067530)
Wang, X., Montero Llopis, P. & Rudner, D. Z. Bacillus subtilis chromosome organization oscillates between two distinct patterns. Proc. Natl Acad. Sci. USA 111, 12877–12882 (2014). (PMID: 25071173)
Kloosterman, T. G. et al. Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of Bacillus subtilis. Mol. Microbiol. 101, 333–350 (2016). (PMID: 270595414949633)
Minina, E. & Arnold, A. Induction of entropic segregation: the first step is the hardest. Soft Matter 10, 5836–5841 (2014). (PMID: 24974935)
Mondal, D. Enhancement of entropic transport by intermediates. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84, 011149 (2011).
Jun, S. & Mulder, B. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc. Natl Acad. Sci. USA 103, 12388–12393 (2006). (PMID: 16885211)
Shi, H. & Huang, K. C. Chromosome organization: making room in a crowd. Curr. Biol. 29, R630–r632 (2019). (PMID: 31287980)
Wu, F. et al. Direct imaging of the circular chromosome in a live bacterium. Nat. Commun. 10, 2194 (2019). (PMID: 310977046522522)
Woldringh, C. L., Mulder, E., Huls, P. G. & Vischer, N. Toporegulation of bacterial division according to the nucleoid occlusion model. Res Microbiol 142, 309–320 (1991). (PMID: 1925029)
Wu, L. J. & Errington, J. Nucleoid occlusion and bacterial cell division. Nat. Rev. Microbiol. 10, 8–12 (2012).
Moriya, S., Rashid, R. A., Rodrigues, C. D. & Harry, E. J. Influence of the nucleoid and the early stages of DNA replication on positioning the division site in Bacillus subtilis. Mol. Microbiol. 76, 634–647 (2010). (PMID: 20199598)
Bar-Ziv, R. & Moses, E. Instability and “pearling” states produced in tubular membranes by competition of curvature and tension. Phys. Rev. Lett. 73, 1392–1395 (1994). (PMID: 10056781)
Nelson, P., Powers, T. & Seifert, U. Dynamical theory of the pearling instability in cylindrical vesicles. Phys. Rev. Lett. 74, 3384–3387 (1995). (PMID: 10058187)
Lopez-Garrido, J. et al. Chromosome translocation inflates bacillus forespores and impacts cellular morphology. Cell 172, 758–770.e714 (2018). (PMID: 294254926370482)
Anagnostopoulos, C. & Spizizen, J. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 81, 741–746 (1961). (PMID: 16561900279084)
Domínguez-Cuevas, P., Mercier, R., Leaver, M., Kawai, Y. & Errington, J. The rod to L-form transition of Bacillus subtilis is limited by a requirement for the protoplast to escape from the cell wall sacculus. Mol. Microbiol. 83, 52–66 (2012). (PMID: 22122227)
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (PMID: 22743772)
Sliusarenko, O., Heinritz, J., Emonet, T. & Jacobs-Wagner, C. High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol. Microbiol. 80, 612–627 (2011). (PMID: 214140373090749)
Lee, S., Wu, L. J. & Errington, J. Microfluidic time-lapse analysis and reevaluation of the Bacillus subtilis cell cycle. MicrobiologyOpen 8, e876 (2019). (PMID: 311979636813450)
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust; 209500/Z/17/Z United Kingdom WT_ Wellcome Trust; 206670/Z/17/Z United Kingdom WT_ Wellcome Trust; 209500 United Kingdom WT_ Wellcome Trust
تواريخ الأحداث: Date Created: 20200820 Date Completed: 20200915 Latest Revision: 20230209
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7434903
DOI: 10.1038/s41467-020-17988-7
PMID: 32811832
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-020-17988-7