دورية أكاديمية

A rare heterozygous variant in FGB (Fibrinogen Merivale) causing hypofibrinogenemia in a Swedish family.

التفاصيل البيبلوغرافية
العنوان: A rare heterozygous variant in FGB (Fibrinogen Merivale) causing hypofibrinogenemia in a Swedish family.
المؤلفون: Fager Ferrari M; Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University, Malmö, Sweden., Leinoe E; Department of Hematology., Rossing M; Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark., Norström E; Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University, Malmö, Sweden., Zetterberg E; Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University, Malmö, Sweden.
المصدر: Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis [Blood Coagul Fibrinolysis] 2020 Oct; Vol. 31 (7), pp. 481-484.
نوع المنشور: Case Reports; Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams And Wilkins Country of Publication: England NLM ID: 9102551 Publication Model: Print Cited Medium: Internet ISSN: 1473-5733 (Electronic) Linking ISSN: 09575235 NLM ISO Abbreviation: Blood Coagul Fibrinolysis Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Lippincott Williams And Wilkins
Original Publication: Oxford, UK : Rapid Communications of Oxford Ltd., c1990-
مواضيع طبية MeSH: Afibrinogenemia/*genetics , Fibrinogen/*genetics, Adult ; Female ; Humans ; Sweden
مستخلص: : Fibrinogen is essential for normal hemostasis. Congenital fibrinogen disorders (afibrinogenemia, hypofibrinogenemia, dysfibrinogenemia and hypodysfibrinogenemia), caused by pathogenic variants in the genes FGA, FGB and FGG, have the potential of causing bleeding diathesis and/or thrombotic events of variable severity. We describe a case of familial hypofibrinogenemia in a Swedish family. The proband is a 27-year-old woman, with a history of significant bleeding diathesis. She was diagnosed with moderate hypofibrinogenemia (0.8 g/l), and genetic screening identified a rare heterozygous missense variant in FGB (c.854G>A, p.Arg285His) (Fibrinogen Merivale) previously described in a New Zealand European family with symptomatic hypofibrinogenemia. The father, sister and brother of the proband also harbored the FGB variant, segregating with hypofibrinogenemia (0.9-1.2 g/l). The proband showed a more severe bleeding phenotype compared with her other hypofibrinogenemic family members; this was attributed to a concomitant platelet dysfunction, also present in her normofibrinogenemic mother.
References: Weisel JW, Litvinov RI. Fibrin formation, structure and properties. Subcell Biochem 2017; 82:405–456.
Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 2008; 112:3011–3025.
Kant JA, Fornace AJ Jr, Saxe D, Simon MI, McBride OW, Crabtree GR. Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transposition and inversion. Proc Natl Acad Sci U S A 1985; 82:2344–2348.
de Moerloose P, Casini A, Neerman-Arbez M. Congenital fibrinogen disorders: an update. Semin Thromb Hemost 2013; 39:585–595.
de Moerloose P, Schved JF, Nugent D. Rare coagulation disorders: fibrinogen, factor VII and factor XIII. Haemophilia 2016; 22: (Suppl 5): 61–65.
Mumford AD, Ackroyd S, Alikhan R, Bowles L, Chowdary P, Grainger J, et al. BCSH Committee. Guideline for the diagnosis and management of the rare coagulation disorders: a United Kingdom Haemophilia Centre Doctors’ Organization guideline on behalf of the British Committee for Standards in Haematology. Br J Haematol 2014; 167:304–326.
Casini A, Undas A, Palla R, Thachil J, de Moerloose P. Subcommittee on Factor XIII and Fibrinogen; Subcommittee on Factor X. Diagnosis and classification of congenital fibrinogen disorders: communication from the SSC of the ISTH. J Thromb Haemost 2018; 16:1887–1890.
Palla R, Peyvandi F, Shapiro AD. Rare bleeding disorders: diagnosis and treatment. Blood 2015; 125:2052–2061.
Peyvandi F, Menegatti M. Treatment of rare factor deficiencies in 2016. Hematology Am Soc Hematol Educ Program 2016; 2016:663–669.
Casini A, Blondon M, Lebreton A, Koegel J, Tintillier V, de Maistre E, et al. Natural history of patients with congenital dysfibrinogenemia. Blood 2015; 125:553–561.
Casini A, Brungs T, Lavenu-Bombled C, Vilar R, Neerman-Arbez M, de Moerloose P. Genetics, diagnosis and clinical features of congenital hypodysfibrinogenemia: a systematic literature review and report of a novel mutation. J Thromb Haemost 2017; 15:876–888.
Boender J, Kruip MJ, Leebeek FW. A diagnostic approach to mild bleeding disorders. J Thromb Haemost 2016; 14:1507–1516.
Freson K, Turro E. High-throughput sequencing approaches for diagnosing hereditary bleeding and platelet disorders. J Thromb Haemost 2017; 15:1262–1272.
Downes K, Megy K, Duarte D, Vries M, Gebhart J, Hofer S, et al. Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders. Blood 2019; 134:2082–2091.
Clauss A. Rapid physiological coagulation method in determination of fibrinogen. Acta Haematol 1957; 17:237–246.
Owren PA, Aas K. The control of dicumarol therapy and the quantitative determination of prothrombin and proconvertin. Scand J Clin Lab Invest 1951; 3:201–208.
Quick AJ. The prothrombin time in haemophilia and in obstructive jaundice. J Biol Chem 1935; 109:73–74.
Elbatarny M, Mollah S, Grabell J, Bae S, Deforest M, Tuttle A, et al. Normal range of bleeding scores for the ISTH-BAT: adult and pediatric data from the merging project. Haemophilia 2014; 20:831–835.
Tham C, Lee K, Laffan M. Utility of fibrinogen in the coagulation screen. Br J Haematol 2019; 186:e137–e139.
Whiting D, DiNardo JA. TEG and ROTEM: technology and clinical applications. Am J Hematol 2014; 89:228–232.
Acharya SS, Dimichele DM. Rare inherited disorders of fibrinogen. Haemophilia 2008; 14:1151–1158.
Fager Ferrari M, Leinoe E, Rossing M, Norstrom E, Strandberg K, Steen Sejersen T, et al. Germline heterozygous variants in genes associated with familial hemophagocytic lymphohistiocytosis as a cause of increased bleeding. Platelets 2018; 29:56–64.
Leinoe E, Zetterberg E, Kinalis S, Ostrup O, Kampmann P, Norstrom E, et al. Application of whole-exome sequencing to direct the specific functional testing and diagnosis of rare inherited bleeding disorders in patients from the Oresund Region, Scandinavia. Br J Haematol 2017; 179:308–322.
Leinoe E, Gabrielaite M, Ostrup O, Funding E, Greinacher A, Ostrowski SR, et al. Outcome of an enhanced diagnostic pipeline for patients suspected of inherited thrombocytopenia. Br J Haematol 2019; 186:373–376.
Maghzal GJ, Brennan SO, Fellowes AP, Spearing R, George PM. Familial hypofibrinogenaemia associated with heterozygous substitution of a conserved arginine residue; Bbeta255 Arg-->His (Fibrinogen Merivale). Biochim Biophys Acta 2003; 1645:146–151.
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020; 581:434–443.
Wyatt J, Brennan SO, May S, George PM. Hypofibrinogenaemia with compound heterozygosity for two gamma chain mutations - gamma 82 Ala-->Gly and an intron two GT-->AT splice site mutation. Thromb Haemost 2000; 84:449–452.
Ivaskevicius V, Jusciute E, Steffens M, Geisen C, Hanfland P, Wienker TF, et al. gammaAla82Gly represents a common fibrinogen gamma-chain variant in Caucasians. Blood Coagul Fibrinolysis 2005; 16:205–208.
Paraboschi EM, Duga S, Asselta R. Fibrinogen as a pleiotropic protein causing human diseases: the mutational burden of alpha, beta, and gamma chains. Int J Mol Sci 2017; 18.:2711.
Stockklausner C, Klotter AC, Dickemann N, Kuhlee IN, Duffert CM, Kerber C, et al. The thrombopoietin receptor P106L mutation functionally separates receptor signaling activity from thrombopoietin homeostasis. Blood 2015; 125:1159–1169.
van den Oudenrijn S, Bruin M, Folman CC, Bussel J, de Haas M, von dem Borne AE. Three parameters, plasma thrombopoietin levels, plasma glycocalicin levels and megakaryocyte culture, distinguish between different causes of congenital thrombocytopenia. Br J Haematol 2002; 117:390–398.
Morgan NV, Pasha S, Johnson CA, Ainsworth JR, Eady RA, Dawood B, et al. A germline mutation in BLOC1S3/reduced pigmentation causes a novel variant of Hermansky-Pudlak syndrome (HPS8). Am J Hum Genet 2006; 78:160–166.
Norman JE, Cunningham MR, Jones ML, Walker ME, Westbury SK, Sessions RB, et al. Protease-activated receptor 4 variant p.Tyr157Cys reduces platelet functional responses and alters receptor trafficking. Arterioscler Thromb Vasc Biol 2016; 36:952–960.
Nurden AT. Clinical significance of altered collagen-receptor functioning in platelets with emphasis on glycoprotein VI. Blood Rev 2019; 38:100592.
Candotti F. Clinical manifestations and pathophysiological mechanisms of the Wiskott-Aldrich syndrome. J Clin Immunol 2018; 38:13–27.
Nissinen L, Rappu P, Ollikka P, Nieminen J, Marjamaki A, Heino J. Platelet response to a small molecule inhibitor of alpha2beta1 integrin is associated with ITGA2 C807T dimorphism. Platelets 2016; 27:378–380.
المشرفين على المادة: 9001-32-5 (Fibrinogen)
تواريخ الأحداث: Date Created: 20200828 Date Completed: 20210414 Latest Revision: 20210414
رمز التحديث: 20240628
DOI: 10.1097/MBC.0000000000000951
PMID: 32852326
قاعدة البيانات: MEDLINE
الوصف
تدمد:1473-5733
DOI:10.1097/MBC.0000000000000951