دورية أكاديمية

Isobutanol production freed from biological limits using synthetic biochemistry.

التفاصيل البيبلوغرافية
العنوان: Isobutanol production freed from biological limits using synthetic biochemistry.
المؤلفون: Sherkhanov S; Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA., Korman TP; Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA.; Invizyne Technologies, Inc., Monrovia, CA, USA., Chan S; Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA., Faham S; Vertex Pharmaceuticals, Boston, MA, USA., Liu H; Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA., Sawaya MR; Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA., Hsu WT; Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA., Vikram E; Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA., Cheng T; Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA., Bowie JU; Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA. bowie@mbi.ucla.edu.
المصدر: Nature communications [Nat Commun] 2020 Aug 27; Vol. 11 (1), pp. 4292. Date of Electronic Publication: 2020 Aug 27.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Biochemistry/*methods , Butanols/*metabolism , Enzymes/*metabolism, Acetolactate Synthase/chemistry ; Acetolactate Synthase/metabolism ; Adenosine Triphosphate ; Alcohol Oxidoreductases/genetics ; Alcohol Oxidoreductases/metabolism ; Biochemistry/instrumentation ; Bioreactors ; Cell-Free System ; Directed Molecular Evolution ; Enzymes/chemistry ; Enzymes/genetics ; Escherichia coli Proteins/genetics ; Escherichia coli Proteins/metabolism ; Glucose/metabolism ; Temperature ; Thermodynamics
مستخلص: Cost competitive conversion of biomass-derived sugars into biofuel will require high yields, high volumetric productivities and high titers. Suitable production parameters are hard to achieve in cell-based systems because of the need to maintain life processes. As a result, next-generation biofuel production in engineered microbes has yet to match the stringent cost targets set by petroleum fuels. Removing the constraints imposed by having to maintain cell viability might facilitate improved production metrics. Here, we report a cell-free system in a bioreactor with continuous product removal that produces isobutanol from glucose at a maximum productivity of 4 g L -1 h -1 , a titer of 275 g L -1 and 95% yield over the course of nearly 5 days. These production metrics exceed even the highly developed ethanol fermentation process. Our results suggest that moving beyond cells has the potential to expand what is possible for bio-based chemical production.
References: Chen, C.-T. & Liao, J. C. Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol. Lett. 363, fnw020 (2016). (PMID: 26832641)
Lee, S. Y., Kim, H. M. & Cheon, S. Metabolic engineering for the production of hydrocarbon fuels. Curr. Opin. Biotechnol. 33, 15–22 (2015). (PMID: 25445543)
Chae, T. U., Choi, S. Y., Kim, J. W., Ko, Y.-S. & Lee, S. Y. Recent advances in systems metabolic engineering tools and strategies. Curr. Opin. Biotechnol. 47, 67–82 (2017). (PMID: 28675826)
Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007). (PMID: 17289987)
Chubukov, V., Mukhopadhyay, A., Petzold, C. J., Keasling, J. D. & Martín, H. G. Synthetic and systems biology for microbial production of commodity chemicals. npj Syst. Biol. Appl. 2, 1–11 (2016).
Sherkhanov, S., Korman, T. P., Clarke, S. G. & Bowie, J. U. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme. Sci. Rep. 6, 24239 (2016). (PMID: 270531004823748)
Lennen, R. M., Braden, D. J., West, R. A., Dumesic, J. A. & Pfleger, B. F. A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol. Bioeng. 106, 193–202 (2010). (PMID: 20073090)
Mohd Azhar, S. H. et al. Yeasts in sustainable bioethanol production: a review. Biochem. Biophys. Rep. 10, 52–61 (2017). (PMID: 291145705637245)
Kim, J. H. et al. Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17. Bioprocess Biosyst. Eng. 37, 1871–KL1878 (2014). (PMID: 24615517)
Choi, G.-W. et al. Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch. Biomass. Bioenergy 34, 1223–1231 (2010).
Nakamura, C. E. & Whited, G. M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454–459 (2003). (PMID: 14580573)
Burgard, A., Burk, M. J., Osterhout, R., Van Dien, S. & Yim, H. Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr. Opin. Biotechnol. 42, 118–125 (2016). (PMID: 27132123)
Kwok, R. Five hard truths for synthetic biology. Nature 463, 288–290 (2010). (PMID: 20090726)
Bowie, J. U. et al. Synthetic biochemistry: the bio-inspired cell-free approach to commodity chemical production. Trends Biotechnol. 38, 766–778 (2020). (PMID: 31983463)
Kay, J. E. & Jewett, M. C. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Metab. Eng. 32, 133–142 (2015). (PMID: 26428449)
Bechtold, M. et al. Biotechnological development of a practical synthesis of ethyl (S)-2-ethoxy-3-(p-methoxyphenyl)propanoate (EEHP): over 100-fold productivity increase from yeast whole cells to recombinant isolated enzymes. Org. Process Res. Dev. 16, 269–276 (2012).
You, C. et al. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch. Biotechnol. Bioeng. 114, 1855–1864 (2017). (PMID: 28409846)
Beer, B., Pick, A. & Sieber, V. In vitro metabolic engineering for the production of α-ketoglutarate. Metab. Eng. 40, 5–13 (2017). (PMID: 28238759)
Korman, T. P., Opgenorth, P. H. & Bowie, J. U. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat. Commun. 8, 15526 (2017). (PMID: 285372535458089)
Opgenorth, P. H., Korman, T. P. & Bowie, J. U. A synthetic biochemistry molecular purge valve module that maintains redox balance. Nat. Commun. 5, 4113 (2014). (PMID: 24936528)
Martín del Campo, J. S. et al. High-yield production of dihydrogen from xylose by using a synthetic enzyme cascade in a cell-free system. Angew. Chem. Int. Ed. Engl. 52, 4587–4590 (2013). (PMID: 23512726)
Zhang, Y.-H. P., Evans, B. R., Mielenz, J. R., Hopkins, R. C. & Adams, M. W. W. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE 2, e456 (2007). (PMID: 175200151866174)
Valliere, M. A. et al. A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat. Commun. 10, 565 (2019). (PMID: 307184856362252)
Brownstein, A. M. Chapter 5 - Isobutanol. In Renewable Motor Fuels (ed. Brownstein, A. M.), 47–56 (Butterworth-Heinemann, 2015).
Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008). (PMID: 18172501)
Baez, A., Cho, K.-M. & Liao, J. C. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl. Microbiol. Biotechnol. 90, 1681–1690 (2011). (PMID: 215474583094657)
Opgenorth, P. H., Korman, T. P., Iancu, L. & Bowie, J. U. A molecular rheostat maintains ATP levels to drive a synthetic biochemistry system. Nat. Chem. Biol. 13, 938–942 (2017). (PMID: 28671683)
Doukyu, N. & Ogino, H. Organic solvent-tolerant enzymes. Biochemical Eng. J. 48, 270–282 (2010).
Ninh, P. H., Honda, K., Sakai, T., Okano, K. & Ohtake, H. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering. Biotechnol. Bioeng. 112, 189–196 (2015). (PMID: 25065559)
Krutsakorn, B. et al. In vitro production of n-butanol from glucose. Metab. Eng. 20, 84–91 (2013). (PMID: 24055789)
Sommer, B. et al. Detailed structure-function correlations of Bacillus subtilis acetolactate synthase. Chembiochem 16, 110–118 (2015). (PMID: 25393087)
Liu, Y., Li, Y. & Wang, X. Acetohydroxyacid synthases: evolution, structure, and function. Appl. Microbiol. Biotechnol. 100, 8633–8649 (2016). (PMID: 27576495)
Goldenzweig, A. et al. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol. Cell 63, 337–346 (2016). (PMID: 274254104961223)
Lin, P. P. et al. Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab. Eng. 24, 1–8 (2014). (PMID: 24721011)
Soh, L. M. J. et al. Engineering a thermostable keto acid decarboxylase using directed evolution and computationally directed protein design. ACS Synth. Biol. 6, 610–618 (2017). (PMID: 28052191)
Xiong, M. et al. A Bio-catalytic approach to aliphatic ketones. Sci. Rep. 2, 1–7 (2012).
Matsubara, K., Yokooji, Y., Atomi, H. & Imanaka, T. Biochemical and genetic characterization of the three metabolic routes in Thermococcus kodakarensis linking glyceraldehyde 3-phosphate and 3-phosphoglycerate. Mol. Microbiol 81, 1300–1312 (2011). (PMID: 21736643)
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015). (PMID: 259502375298202)
D’Ambrosio, K. et al. The first crystal structure of a thioacylenzyme intermediate in the ALDH family: new coenzyme conformation and relevance to catalysis. Biochemistry 45, 2978–2986 (2006). (PMID: 16503652)
Boyd, D. A., Cvitkovitch, D. G. & Hamilton, I. R. Sequence, expression, and function of the gene for the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans. J. Bacteriol. 177, 2622–2627 (1995). (PMID: 7751269176930)
Flamholz, A., Noor, E., Bar-Even, A. & Milo, R. eQuilibrator–the biochemical thermodynamics calculator. Nucleic Acids Res. 40, D770–D775 (2012). (PMID: 22064852)
Malinowski, J. J. Two-phase partitioning bioreactors in fermentation technology. Biotechnol. Adv. 19, 525–538 (2001). (PMID: 14538064)
Zhang, Y.-H. P. Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol. Adv. 33, 1467–1483 (2015). (PMID: 25447781)
A.Rollin, J., Kin Tam, T. & Percival Zhang, Y.-H. New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green. Chem. 15, 1708–1719 (2013).
Black, W. B. et al. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nat. Chem. Biol. 16, 87–94 (2020). (PMID: 31768035)
المشرفين على المادة: 0 (Butanols)
0 (Enzymes)
0 (Escherichia coli Proteins)
56F9Z98TEM (isobutyl alcohol)
8L70Q75FXE (Adenosine Triphosphate)
EC 1.1.- (Alcohol Oxidoreductases)
EC 1.1.- (YahK protein, E coli)
EC 2.2.1.6 (Acetolactate Synthase)
IY9XDZ35W2 (Glucose)
تواريخ الأحداث: Date Created: 20200829 Date Completed: 20200924 Latest Revision: 20210827
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC7453195
DOI: 10.1038/s41467-020-18124-1
PMID: 32855421
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-020-18124-1