دورية أكاديمية

Cancer SLC43A2 alters T cell methionine metabolism and histone methylation.

التفاصيل البيبلوغرافية
العنوان: Cancer SLC43A2 alters T cell methionine metabolism and histone methylation.
المؤلفون: Bian Y; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Li W; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Kremer DM; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA., Sajjakulnukit P; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA., Li S; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA., Crespo J; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Nwosu ZC; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA., Zhang L; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA., Czerwonka A; Department of Virology and Immunology, Maria Curie-Skłodowska University, Lublin, Poland., Pawłowska A; First Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland., Xia H; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Li J; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Liao P; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Yu J; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Vatan L; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Szeliga W; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Wei S; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Grove S; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Liu JR; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA., McLean K; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA., Cieslik M; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA.; Department of Pathology, University of Michigan, Ann Arbor, MI, USA., Chinnaiyan AM; Department of Pathology, University of Michigan, Ann Arbor, MI, USA.; Department of Urology, University of Michigan, Ann Arbor, MI, USA.; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA., Zgodziński W; Second Department of General, Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, Lublin, Poland., Wallner G; Second Department of General, Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, Lublin, Poland., Wertel I; First Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland., Okła K; First Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland., Kryczek I; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA., Lyssiotis CA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA.; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA., Zou W; Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA. wzou@med.umich.edu.; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA. wzou@med.umich.edu.; Department of Pathology, University of Michigan, Ann Arbor, MI, USA. wzou@med.umich.edu.; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA. wzou@med.umich.edu.; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA. wzou@med.umich.edu.
المصدر: Nature [Nature] 2020 Sep; Vol. 585 (7824), pp. 277-282. Date of Electronic Publication: 2020 Sep 02.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Methylation*, Amino Acid Transport System L/*metabolism , CD8-Positive T-Lymphocytes/*metabolism , Histones/*metabolism , Methionine/*metabolism , Neoplasms/*metabolism, Amino Acid Transport System L/deficiency ; Animals ; CD8-Positive T-Lymphocytes/cytology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line, Tumor ; Epigenesis, Genetic ; Female ; Histones/chemistry ; Humans ; Mice ; Neoplasms/genetics ; Neoplasms/immunology ; Neoplasms/pathology ; Receptors, Antigen, T-Cell/metabolism ; STAT5 Transcription Factor/metabolism
مستخلص: Abnormal epigenetic patterns correlate with effector T cell malfunction in tumours 1-4 , but the cause of this link is unknown. Here we show that tumour cells disrupt methionine metabolism in CD8 + T cells, thereby lowering intracellular levels of methionine and the methyl donor S-adenosylmethionine (SAM) and resulting in loss of dimethylation at lysine 79 of histone H3 (H3K79me2). Loss of H3K79me2 led to low expression of STAT5 and impaired T cell immunity. Mechanistically, tumour cells avidly consumed methionine and outcompeted T cells for methionine by expressing high levels of the methionine transporter SLC43A2. Genetic and biochemical inhibition of tumour SLC43A2 restored H3K79me2 in T cells, thereby boosting spontaneous and checkpoint-induced tumour immunity. Moreover, methionine supplementation improved the expression of H3K79me2 and STAT5 in T cells, and this was accompanied by increased T cell immunity in tumour-bearing mice and patients with colon cancer. Clinically, tumour SLC43A2 correlated negatively with T cell histone methylation and functional gene signatures. Our results identify a mechanistic connection between methionine metabolism, histone patterns, and T cell immunity in the tumour microenvironment. Thus, cancer methionine consumption is an immune evasion mechanism, and targeting cancer methionine signalling may provide an immunotherapeutic approach.
التعليقات: Comment in: Immunol Cell Biol. 2020 Sep;98(8):623-625. (PMID: 32842169)
Comment in: Cell Metab. 2020 Nov 3;32(5):699-701. (PMID: 33147482)
References: Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011). (PMID: 2173967210.1038/ni.2035)
Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016). (PMID: 27789795548479510.1126/science.aaf2807)
Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016). (PMID: 27789799549758910.1126/science.aae0491)
Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017). (PMID: 28514453569321910.1038/nature22367)
Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv4 (2016). (PMID: 26936508485922010.1126/scitranslmed.aad7118)
Horton, B. L., Williams, J. B., Cabanov, A., Spranger, S. & Gajewski, T. F. Intratumoral CD8 + T-cell apoptosis is a major component of T-cell dysfunction and impedes antitumor immunity. Cancer Immunol. Res. 6, 14–24 (2018). (PMID: 2909742210.1158/2326-6066.CIR-17-0249)
Schoenborn, J. R. et al. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-γ. Nat. Immunol. 8, 732–742 (2007). (PMID: 17546033214474410.1038/ni1474)
Khan, O. et al. TOX transcriptionally and epigenetically programs CD8 + T cell exhaustion. Nature 571, 211–218 (2019). (PMID: 31207603671320210.1038/s41586-019-1325-x)
Zhao, E. et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat. Immunol. 17, 95–103 (2016). (PMID: 2652386410.1038/ni.3313)
Song, M. et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562, 423–428 (2018). (PMID: 30305738623728210.1038/s41586-018-0597-x)
Li, W. et al. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metab. 28, 87–103.e6 (2018). (PMID: 29805099623821910.1016/j.cmet.2018.04.022)
Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017). (PMID: 29083399577015010.1038/ni.3868)
Levine, A. J. & Puzio-Kuter, A. M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340–1344 (2010). (PMID: 2112724410.1126/science.1193494)
Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011). (PMID: 2125839410.1038/nrc2981)
Guttormsen, A. B., Solheim, E. & Refsum, H. Variation in plasma cystathionine and its relation to changes in plasma concentrations of homocysteine and methionine in healthy subjects during a 24-h observation period. Am. J. Clin. Nutr. 79, 76–79 (2004). (PMID: 1468440010.1093/ajcn/79.1.76)
Schmidt, J. A. et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur. J. Clin. Nutr. 70, 306–312 (2016). (PMID: 10.1038/ejcn.2015.144)
Qiu, J. et al. Acetate promotes T cell effector function during glucose restriction. Cell Rep. 27, 2063–2074.e5 (2019). (PMID: 31091446654438310.1016/j.celrep.2019.04.022)
Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861–873 (2015). (PMID: 26411344463506910.1016/j.cmet.2015.08.024)
Shiraki, N. et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780–794 (2014). (PMID: 2474680410.1016/j.cmet.2014.03.017)
Min, J., Feng, Q., Li, Z., Zhang, Y. & Xu, R.-M. Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003). (PMID: 1262819010.1016/S0092-8674(03)00114-4)
Nguyen, A. T. & Zhang, Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev. 25, 1345–1358 (2011). (PMID: 21724828313407810.1101/gad.2057811)
Jo, S. Y., Granowicz, E. M., Maillard, I., Thomas, D. & Hess, J. L. Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 117, 4759–4768 (2011). (PMID: 21398221310068710.1182/blood-2010-12-327668)
Villarino, A., Kanno, Y. & O’Shea, J. Mechanisms and consequences of Jak–STAT signaling in the immune system. Nat. Immunol. 18, 374–384 (2017). (PMID: 2832326010.1038/ni.3691)
Kagoya, Y. et al. DOT1L inhibition attenuates graft-versus-host disease by allogeneic T cells in adoptive immunotherapy models. Nat. Commun. 9, 1915 (2018). (PMID: 29765028595406110.1038/s41467-018-04262-0)
Schübeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004). (PMID: 1517525942035210.1101/gad.1198204)
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007). (PMID: 17512414)
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002). (PMID: 1204515318660410.1101/gr.229102)
Rosenbloom, K. R. et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 41, D56–D63 (2013). (PMID: 2319327410.1093/nar/gks1172)
Alexander, S. P. H. et al. The concise guide to pharmacology 2019/20: transporters. Br. J. Pharmacol. 176 (Suppl. 1), S397–S493 (2019). (PMID: 317107136844579)
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016). (PMID: 27124452494452810.1126/science.aad0501)
Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017). (PMID: 2811121410.1016/j.cmet.2016.12.011)
Geiger, R. et al. l-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016). (PMID: 27745970507528410.1016/j.cell.2016.09.031)
Roy, D. G. et al. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab. 31, 250–266.e9 (2020). (PMID: 3202344610.1016/j.cmet.2020.01.006)
Richon, V. M. et al. Chemogenetic analysis of human protein methyltransferases. Chem. Biol. Drug Des. 78, 199–210 (2011). (PMID: 2156455510.1111/j.1747-0285.2011.01135.x)
Cavuoto, P. & Fenech, M. F. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat. Rev. 38, 726–736 (2012). (PMID: 2234210310.1016/j.ctrv.2012.01.004)
Gao, X. et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572, 397–401 (2019). (PMID: 31367041695102310.1038/s41586-019-1437-3)
Roby, K. F. et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21, 585–591 (2000). (PMID: 1075319010.1093/carcin/21.4.585)
Wang, W. et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165, 1092–1105 (2016). (PMID: 27133165487485310.1016/j.cell.2016.04.009)
Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009). (PMID: 19237447266681210.1093/bioinformatics/btp101)
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 10.1073/pnas.0506580102161995171239896)
Bacher, R. & Kendziorski, C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 17, 63 (2016). (PMID: 27052890482385710.1186/s13059-016-0927-y)
Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theor. den Biowissenschaften 131, 281–285 (2012). (PMID: 10.1007/s12064-012-0162-3)
Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 96 (2018). (PMID: 608286010.1038/s12276-018-0071-8)
Lee, H.-J., Kremer, D. M., Sajjakulnukit, P., Zhang, L. & Lyssiotis, C. A. A large-scale analysis of targeted metabolomics data from heterogeneous biological samples provides insights into metabolite dynamics. Metabolomics 15, 103 (2019). (PMID: 31289941661622110.1007/s11306-019-1564-8)
Yuan, M. et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS. Nat. Protocols 14, 313–330 (2019). (PMID: 3068393710.1038/s41596-018-0102-x)
معلومات مُعتمدة: CA099985 United States CA NCI NIH HHS; R01 CA193136 United States CA NCI NIH HHS; P30 CA046592 United States CA NCI NIH HHS; CA217648 United States CA NCI NIH HHS; CA152470 United States CA NCI NIH HHS; R01 CA152470 United States CA NCI NIH HHS; R01 CA123088 United States CA NCI NIH HHS; U24 DK097153 United States DK NIDDK NIH HHS; R37 CA237421 United States CA NCI NIH HHS; R01 CA099985 United States CA NCI NIH HHS; R01 CA217510 United States CA NCI NIH HHS; DK097153 United States NH NIH HHS; R01 CA190176 United States CA NCI NIH HHS; R01 CA214911 United States CA NCI NIH HHS; CA123088 United States CA NCI NIH HHS; CA193136 United States CA NCI NIH HHS; T32 CA009676 United States CA NCI NIH HHS; R01 CA248430 United States CA NCI NIH HHS; R01 CA211016 United States CA NCI NIH HHS
المشرفين على المادة: 0 (Amino Acid Transport System L)
0 (Histones)
0 (Receptors, Antigen, T-Cell)
0 (STAT5 Transcription Factor)
0 (Slc43a2 protein, mouse)
AE28F7PNPL (Methionine)
تواريخ الأحداث: Date Created: 20200904 Date Completed: 20200921 Latest Revision: 20220418
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7486248
DOI: 10.1038/s41586-020-2682-1
PMID: 32879489
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-020-2682-1