دورية أكاديمية

Short- and long-term effects of fire on stem hydraulics in Pinus ponderosa saplings.

التفاصيل البيبلوغرافية
العنوان: Short- and long-term effects of fire on stem hydraulics in Pinus ponderosa saplings.
المؤلفون: Partelli-Feltrin R; Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, Idaho, USA., Smith AMS; Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, Idaho, USA., Adams HD; School of the Environment, Washington State University, Pullman, Washington, USA., Kolden CA; Gallo School of Management, University of California Merced, Merced, California, USA., Johnson DM; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA.
المصدر: Plant, cell & environment [Plant Cell Environ] 2021 Mar; Vol. 44 (3), pp. 696-705. Date of Electronic Publication: 2020 Oct 01.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Ltd Country of Publication: United States NLM ID: 9309004 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-3040 (Electronic) Linking ISSN: 01407791 NLM ISO Abbreviation: Plant Cell Environ Subsets: MEDLINE
أسماء مطبوعة: Publication: Hoboken, NJ : John Wiley & Sons Ltd.
Original Publication: Oxford, UK : Blackwell Scientific Publications
مواضيع طبية MeSH: Fires*, Pinus ponderosa/*physiology , Plant Stems/*physiology, Pinus ponderosa/metabolism ; Seedlings/growth & development ; Seedlings/metabolism ; Seedlings/physiology ; Water/metabolism ; Xylem/metabolism ; Xylem/physiology ; Xylem/ultrastructure
مستخلص: Understanding tree physiological responses to fire is needed to accurately model post-fire carbon processes and inform management decisions. Given trees can die immediately or at extended time periods after fire, we combined two experiments to assess the short- (one-day) and long-term (21-months) fire effects on Pinus ponderosa sapling water transport. Native percentage loss of conductivity (nPLC), vulnerability to cavitation and xylem anatomy were assessed in unburned and burned saplings at lethal and non-lethal fire intensities. Fire did not cause any impact on nPLC and xylem cell wall structure in either experiment. However, surviving saplings evaluated 21-months post-fire were more vulnerable to cavitation. Our anatomical analysis in the long-term experiment showed that new xylem growth adjacent to fire scars had irregular-shaped tracheids and many parenchyma cells. Given conduit cell wall deformation was not observed in the long-term experiment, we suggest that the irregularity of newly grown xylem cells nearby fire wounds may be responsible for decreasing resistance to embolism in burned plants. Our findings suggest that hydraulic failure is not the main short-term physiological driver of mortality for Pinus ponderosa saplings. However, the decrease in embolism resistance in fire-wounded saplings could contribute to sapling mortality in the years following fire.
(© 2020 John Wiley & Sons Ltd.)
التعليقات: Comment in: Plant Cell Environ. 2021 Mar;44(3):692-695. (PMID: 33410515)
References: Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences of the Unites States of America, 113, 11770-11775.
Alder, N. N., Pockman, W. T., Sperry, J. S., & Nuismer, S. (1997). Use of centrifugal force in the study of xylem cavitation. Journal of Experimental Botany, 48(308), 665-674.
Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the anthropocene. Ecosphere, 6(8), 1-55.
Arbellay, E., Stoffel, M., Sutherland, E. K., Smith, K. T., & Falk, D. A. (2014). Changes in tracheid and ray traits in fire scars of north American conifer and their ecophysiological implications. Annals of Botany, 114, 223-232.
Battaglia, M., Smith, F. W., & Sheppard, W. D. (2009). Predicting mortality of ponderosa pine regeneration after prescribed fire in the Black Hills, South Dakota, USA. International Journal of Wildland Fire, 18, 176-190.
Battipaglia, G., Savi, T., Ascoli, D., Castagneri, D., Esposito, A., Mayr, S., & Nardini, A. (2016). Effects of prescribed burning on ecophysiological, anatomical and stem hydraulic properties in Pinus pinea L. Tree Physiology, 36, 1019-1031.
Bowman, D. M. J. S., Williamson, G. J., Abatzoglou, J. T., Kolden, C. A., Cochrane, M. A., & Smith, A. M. S. (2017). Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology and Evolution, 1, 58.
Brodersen, C. R., Germino, M. J., Johnson, D. M., Reinhardt, K., Smith, W. K., Resler, L. M., … Cairns, D. M. (2019). Seedling survival at timberline is critical to conifer mountain forest elevation and extent. Frontiers in Forests and Global Change, 2, 9.
Brodribb, T. J., & Cochard, H. (2009). Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiology, 149, 575-584.
Bӓr, A., Michaeltz, S. T., & Mayr, S. (2019). Fire effects on tree physiology. New Phytologist, 223, 1728-1741.
Bӓr, A., Nardini, A., & Mayr, S. (2018). Post-fire effects in xylem hydraulics of Picea abies, Pinus sylvestris and Fagus sylvatica. New Phytologist, 217, 1484-1493.
Chano, V., López, R., Pita, P., Collada, C., & Soto, A. (2015). Proliferation of axial parenchymatic xylem cell is a key step in wound closure of girdled stems in Pinus canariensis. BMC Plant Biology, 15(64), 64. https://doi.org/10.1186/s12870-015-0447-z.
Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B., & Jansen, S. (2013). Methods for measuring plant vulnerability to cavitation: A critical review. Journal of Experimental Botany, 64, 4779-4791.
Delzon, S., Douthe, C., Sala, A., & Cochard, H. (2010). Mechanism of water-stress induced cavitation in conifers: Bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant, Cell and Environment, 33, 2101-2111.
Dickinson, M. B., & Johnson, E. A. (2004). Temperature-dependent rate models of vascular cambium cell mortality. Canadian Journal of Forest Research, 34, 546-559.
Ducrey, M., Duhoux, F., Huc, R., & Rigolot, E. (1996). The ecophysiological and growth responses of Aleppo pine (Pinus halepensis) to controlled heating applied to the base of the trunk. Canadian Journal of Forest Research, 26(8), 1366-1374.
Duursma, R. A., & Choat, B. (2017). Fitplc - An R package to fit hydraulic vulnerability curves. Journal of Plant Hydraulics, 4, e-002.
Flannigan, M., Cantin, A. S., De Groot, W. J., Wotton, M., Newbery, A., & Gowman, L. M. (2013). Global wildland fire season severity in the 21st century. Forest Ecology and Management, 294, 54-61.
Gartner, F. R., & Thompson, W. W. (1972). Fire in the Black Hills forest-grass ecotone. Proceedings of the Tall Timbers Fire Ecology Conference, 12, 37-68.
Hammond, W. M., Yu, K. L., Wilson, L. A., Will, R. E., Anderegg, W. R. L., & Adams, H. D. (2019). Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phytologist, 223, 1834-1843.
Hillis, W. E. (1987). Heartwood and tree exudates. Berlin, Germany: Springer-Verlag.
Hood, S. M., & Sala, A. (2015). Ponderosa pine resin defenses and growth: Metrics matter. Tree Physiology, 35, 1223-1235.
Hood S.M., Varner J.M., van Mantgem P. & Cansler C.A. (2018). Fire and tree death: Understanding and improving modeling of fire-induced tree mortality. Environmental Research Letters, 13, 113004.
Hubbard, R. M., Ryan, M. G., Stiller, V., & Sperry, J. S. (2001). Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell and Environment, 24, 113-121.
Irvine, G. M. (1985). The significance of the glass transition of lignin in thermomechanical pulping. Wood Science and Technology, 19, 139-149.
Johnson, D. M., Wortemann, R., McCulloh, K. A., Jordan-Meille, L., Ward, E., Warren, J. M., … Domec, J. C. (2016). A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology, 36(8), 983-993.
Jolly, W. M., & Johnson, D. M. (2018). Pyro-ecophysiology: Shifting the paradigm of live wildland fuel research. Fire, 1(1), 8.
Kavanagh, K. L., Dickinson, M. B., & Bova, A. S. (2010). A way forward for fire-caused tree mortality prediction: Modeling a physiological consequence of fire. Fire Ecology, 6, 80-94.
Kremens, R., Smith, A. M. S., & Dickinson, M. (2010). Fire metrology: Current and future directions in physics-based measurements. Fire Ecology, 6, 13-35.
Krieger, D. J. (2001). Economic value of forest ecosystem services: A review. Washington, DC: The Wilderness Society.
Kuroda, K., & Shimaji, K. (1984). Wound effects on xylem cell differentiation in a conifer. IAWA Bulletin, 5(4), 295-305.
Li, W., Hartmann, H., Adams, H. D., Zhang, H., Jin, C., Zhao, C., … Wu, J. (2018). The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiology, 00, 1-18.
Loewus, F. A., & Runeckles, V. C. (1977). The structure, biosynthesis, and degradation of wood. New York, NY: Plenum Press.
Lombardero, M. J., Ayres, M. P., & Ayres, B. D. (2006). Effects of fire and mechanical wounding on Pinus resinosa resin defenses, beetle attacks and pathogens. Forest Ecology and Management, 225, 349-358.
McCulloh, K. A., Domec, J. C., Johnson, D. M., Smith, D. D., & Meinzer, F. C. (2019). A dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole plants. Plant, Cell & Environment, 42(10), 2789-2807.
McDowell, N. G. (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155, 1051-1059.
McHugh, C. W., & Kolb, T. E. (2003). Ponderosa pine mortality following fire in northern Arizona. International Journal of Wildland Fire, 12, 7-22.
Micco, V. D., Zalloni, E., Balzano, A., & Battipaglia, G. (2013). Fire influence on Pinus halepensis: Wood responses close and far from the scars. IAWA Journal, 34(4), 446-458.
Michaletz, S. T., Johnson, E. A., & Tyree, M. T. (2012). Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: Cavitation and deformation of xylem in forest fires. New Phytologist, 194, 254-263.
Miller, M. (2000). Chapter 2: Fire autecology. In J. K. Brown & J. K. Smith (Eds.), Wildland fire in ecosystems: Effects of fire on flora. Gen. Tech. Report RMRS-GTR-42 (Vol. 2, pp. 9-34). Ogden, UT: Rocky Mountain Research Station, Forest Service, U.S. Department of Agriculture.
Naficy, C., Sala, A., Keeling, E. G., Graham, J., & DeLuca, T. H. (2010). Interactive effects of historical logging and fire exclusion on ponderosa pine forest structure in the northern Rockies. Ecological Applications, 20(7), 1851-1864.
Nardini, A., Gullo, M. A. L., & Salleo, S. (2011). Refilling embolized xylem conduits: Is it a matter of phloem unloading. Plant Science, 180, 604-611.
O'Brien, J. J., Heirs, J. K., Wavern, J. M., Hoffman, C. M., Dickinson, M. B., Michaletz, S. T., … Butler, B. W. (2018). Advances in mechanistic approaches to quantifying biophysical fire effects. Current Forestry Reports, 4(4), 161-177.
Olsson, A. M., & Salmén, L. (1997). The effect of lignin composition on the viscoelastic properties of wood. Nordic Pulp and Paper Research Journal, 12, 140-144.
Panshin A.J. & de Zeeuw C. (1980). Textbook of wood technology - Structure, identification, properties, and uses of the commercial woods of the United States and Canada. 4th, McGraw-Hill, New York, NY.
Pausas, J. G. (2004). Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climate Change, 63, 337-350.
R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Ryan, K. C. (2000). Effects of fire injury on water relations of ponderosa pine. In W. K. Moser & C. F. Moser (Eds.), Fire and forest ecology: Innovative silviculture and vegetation management. Tall timbers ecology conference proceedings no. 21 (pp. 58-66). Tallahassee, FL: Tall Timbers Research Station.
Ryan, K. C., & Frandsen, W. H. (1991). Basal injury from smoldering fires in mature Pinus ponderosa Laws. International Journal of Wildland Fire, 2, 107-118.
Ryan, K. C., Peterson, D. L., & Reinhardt, E. D. (1988). Long-term fire-caused mortality of Douglas-fir. Forest Science, 34, 190-199.
Sapes, G., Roskilly, B., Dobrowski, S., Maneta, M., Anderegg, W. R. L., Martinez-Vilalta, J., & Sala, A. (2019). Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality. Tree Physiology, 39, 1300-1312.
Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R., & Pockman, W. T. (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell and Environment, 37, 153-161.
Sheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics, 31, 79-105.
Smith, A. M. S., Kolden, C. A., Tinkham, W. T., Talhelm, A., Marshall, J. D., Hudak, A. T., … Gosz, J. (2014). Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems. Remote Sensing of Environment, 154, 322-337.
Smith, A. M. S., Sparks, A. M., Kolden, C. A., Abatzoglou, J. T., Talhelm, A. F., Johnson, D. M., … Kremens, R. J. (2016). Towards a new paradigm in fire severity research using dose-response experiments. International Journal of Wildland Fire, 25, 158-166.
Smith, A. M. S., Talhelm, A. F., Johnson, D. M., Sparks, A. M., Yedinak, K. M., Apostol, K. G., … Kremens, R. L. (2017). Effects of fire radiative energy density doses on Pinus contorta and Larix occidentalis sapling physiology and mortality. International Journal of Wildland Fire, 26, 82-94.
Smith, A. M. S., Tinkham, W. T., Roy, D. P., Boschetti, L., Kumar, S., Sparks, A. M., … Falkowski, M. J. (2013). Quantification of fuel moisture effects on biomass consumed derived from fire radiative energy retrievals. Geophysical Research Letters, 40, 6298-6302.
Smith, K. T., Arbellay, E., Falk, D. A., & Sutherland, E. K. (2016). Macroanatomy and compartmentalization of recent fire scars in three north American conifers. Canadian Journal of Forest Research, 46(4), 535-542.
Sparks, A. M., Kolden, C. A., Smith, A. M. S., Boschetti, L., Johnson, D. M., & Cochrane, M. A. (2018). Fire intensity impacts on post-fire response of temperate coniferous forest net primary productivity. Biogeosciences, 15(4), 1173-1183.
Sparks, A. M., Kolden, C. A., Talhelm, A. F., Smith, A. M. S., Apostol, K. G., Johnson, D. M., & Boschetti, L. (2016). Spectral indices accurately quantify changes in tree physiology following fire: Toward mechanistic assessments of landscape post-fire carbon cycling. Remote Sensing, 8(7), 572.
Sperry, J. S., Donnelly, J. R., & Tyree, M. T. A. (1988). Method for measuring hydraulic conductivity and embolism in xylem. Plan, Cell and Environment, 11, 35-40.
Sperry, J. S., & Tyree, M. T. (1988). Mechanism of water stress-induced xylem embolism. Plant Physiology, 88, 581-587.
Steady, W. D., Feltrin, R. P., Johnson, D. M., Sparks, A. M., Kolden, C. A., Talhelm, A. F., … Smith, A. M. S. (2019). The survival of Pinus ponderosa saplings subjected to increasing levels of fire behavior and impacts on post-fire growth. Fire, 2(23), 23.
Stenzel, J. E., Bartowitz, K. J., Hartman, M. D., Lutz, J. A., Kolden, C. A., Smith, A. M. S., … Hudiburg, T. W. (2019). Fixing a snag in carbon emissions estimates from wildfires. Global Change Biology, 25, 3985-3994.
Tyree, M. T., Salleo, S., Nardini, A., Gullo, M. A. L., & Mosca, R. (1999). Refilling of embolized vessels in young stems of Laurel. Do we need a new paradigm? Plant Physiology, 120, 11-21.
Urli, M., Porté, A. J., Cochard, H., Guengant, Y., Burlett, R., & Delzon, S. (2013). Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiology, 1-12.
Weber, R., Schwendener, A., Schmid, S., Lambert, S., Wiley, E., Landhäusser, S. M., … Hoch, G. (2018). Living on next to nothing: Tree seedlings can survive weeks with very low carbohydrate concentrations. New Phytologist, 218, 107-118.
West, A. G., Nel, J. A., Bond, W. J., & Midgley, J. J. (2016). Experimental evidence for heat plume-induced cavitation and xylem deformation as a mechanism of rapid post-fire tree mortality. New Phytologist, 211, 828-838.
Zajączkowska, U. (2014). Regeneration of scots pine stem after wounding. IAWA Journal, 35(3), 270-280.
فهرسة مساهمة: Keywords: cambium; cavitation; sapling mortality; wound closure; xylem
المشرفين على المادة: 059QF0KO0R (Water)
تواريخ الأحداث: Date Created: 20200905 Date Completed: 20210713 Latest Revision: 20210713
رمز التحديث: 20221213
DOI: 10.1111/pce.13881
PMID: 32890427
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-3040
DOI:10.1111/pce.13881