دورية أكاديمية

Genome-wide association study for phosphate deficiency responsive root hair elongation in chickpea.

التفاصيل البيبلوغرافية
العنوان: Genome-wide association study for phosphate deficiency responsive root hair elongation in chickpea.
المؤلفون: Kohli PS; National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India., Kumar Verma P; National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India., Verma R; National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India., Parida SK; National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India., Thakur JK; National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India., Giri J; National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India. jitender@nipgr.ac.in.
المصدر: Functional & integrative genomics [Funct Integr Genomics] 2020 Nov; Vol. 20 (6), pp. 775-786. Date of Electronic Publication: 2020 Sep 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 100939343 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1438-7948 (Electronic) Linking ISSN: 1438793X NLM ISO Abbreviation: Funct Integr Genomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer, c2000-
مواضيع طبية MeSH: Genome-Wide Association Study*, Cicer/*genetics , Phosphates/*metabolism , Quantitative Trait Loci/*genetics, Cicer/metabolism ; Genome, Plant/genetics ; Genomics ; Genotype ; Plant Breeding ; Plant Roots/genetics ; Plant Roots/growth & development ; Polymorphism, Single Nucleotide/genetics
مستخلص: Root hairs (RHs) are single-celled elongated epidermal cells and play a vital role in nutrient absorption, particularly for immobile minerals like phosphorus (P). As an adaptive response to P deficiency, an increase in RH length enhances root-soil contact and absorptive area for P absorption. Genetic variations have been reported for RH length and its response to P deficiency in plants. However, only a few association studies have been conducted to identify genes and genetic loci associated with RH length. Here, we screened desi chickpea accessions for RH length and its plasticity under P deficiency. Further, the genome-wide association study (GWAS) was conducted to identify the genetic loci associated with RH length in P deficient and sufficient conditions. Although high variability was observed in terms of RH length in diverse genotypes, majority of the accessions showed typical response of increase in RH length in low P. Genome-wide association mapping identified many SNPs with significant associations with RH length in P-sufficient and P-deficient conditions. A few candidate genes for RH length in P deficient (SIZ1-like and HAD superfamily protein) and sufficient (RSL2-like and SMAP1-like) conditions were identified which have known roles in RH development and P deficiency response or both. Highly associated loci and candidate genes identified in this study would be useful for genomic-assisted breeding to develop P-efficient chickpea.
References: Anon (2018) 4th Advance estimate of Production of Foodgrains for 2017– 18. Directorate of Economics & Statistics, Department of Agriculture, Cooperation and Farmers’ Welfare, Ministry of Agriculture and Farmers’ Welfare, Government of India. https://eands.dacnet.nic.in/Advance_Estimate/4th_Adv_Estimates2017-18_Eng.pdf . Accessed 17 Oct 2018.
Balcerowicz D, Schoenaers S, Vissenberg K (2015) Cell fate determination and the switch from diffuse growth to planar polarity in Arabidopsis root epidermal cells. Front Plant Sci 6:1163. https://doi.org/10.3389/fpls.2015.01163. (PMID: 10.3389/fpls.2015.01163267791924688357)
Barber SA (1962) A diffusion and mass-flow concept of soil nutrient availability. Soil Sci 93:39–49. (PMID: 10.1097/00010694-196201000-00007)
Basu U, Upadhyaya HD, Srivastava R, Daware A, Malik N, Sharma A, Bajaj D, Narnoliya L, Thakro V, Kujur A, Tripathi S, Bharadwaj C, Hegde VS, Pandey AK, Singh AK, Tyagi AK, Parida SK (2019) Abc transporter-mediated transport of glutathione conjugates enhances seed yield and quality in chickpea. Plant Physiol 180:253–275. https://doi.org/10.1104/pp.18.00934. (PMID: 10.1104/pp.18.00934307372666501113)
Bates T, Lynch J (1996) Stimulation of root hair elongation in Arabidopsis thaiiana by low phosphorus availability. Plant Cell Environ 19:529–538. (PMID: 10.1111/j.1365-3040.1996.tb00386.x)
Bhosale R, Giri J, Pandey BK, Giehl RFH, Hartmann A, Traini R, Truskina J, Leftley N, Hanlon M, Swarup K, Rashed A, Voß U, Alonso J, Stepanova A, Yun J, Ljung K, Brown KM, Lynch JP, Dolan L, Vernoux T, Bishopp A, Wells D, von Wirén N, Bennett MJ, Swarup R (2018) A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nat Commun 9:1409. https://doi.org/10.1038/s41467-018-03851-3. (PMID: 10.1038/s41467-018-03851-3296511145897496)
Bobrownyzky J (2016) Production of branched root hairs under progressive drought stress in Arabidopsis thaliana. Cytol Genet 50:324–329. https://doi.org/10.3103/S0095452716050030. (PMID: 10.3103/S0095452716050030)
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308. (PMID: 10.1093/bioinformatics/btm308)
Brown LK, George TS, Thompson JA, Wright G, Lyon J, Dupuy L, Hubbard SF, White PJ (2012) What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)? Ann Bot 110:319–328. https://doi.org/10.1093/aob/mcs085. (PMID: 10.1093/aob/mcs085225395403394649)
Brown LK, George TS, Dupuy LX, White PJ (2013) A conceptual model of root hair ideotypes for future agricultural environments: What combination of traits should be targeted to cope with limited P availability? Ann Bot 112:317–330. https://doi.org/10.1093/aob/mcs231. (PMID: 10.1093/aob/mcs23123172412)
Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J (2010) A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in arabidopsis. PLoS Genet 6:e1001102. https://doi.org/10.1371/journal.pgen.1001102. (PMID: 10.1371/journal.pgen.1001102208385962936532)
Cordell D, White S (2011) Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3:2027–2049. https://doi.org/10.3390/su3102027. (PMID: 10.3390/su3102027)
El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. https://doi.org/10.1093/nar/gky995. (PMID: 10.1093/nar/gky995)
FAO (2015) World fertilizer trends and outlook to 2018, Food and Agriculture Organization of the United Nations, Rome, Italy.
FAOSTAT Statistical Database (2017) Food and Agriculture Organization of the United Nations, Rome, Italy. http://www.fao.org/faostat/en/#home . Accessed 7 Jan 2020.
Gahoonia TS, Nielsen NE (2004) Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil 262:55–62. (PMID: 10.1023/B:PLSO.0000037020.58002.ac)
Gahoonia TS, Care D, Nielsen NE (1997) Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant Soil 191:181–188. (PMID: 10.1023/A:1004270201418)
Gahoonia TS, Ali R, Malhotra RS (2007) Variation in root morphological and physiological traits and nutrient uptake of chickpea genotypes. J Plant Nutr 30:829–841. https://doi.org/10.1080/15226510701373213. (PMID: 10.1080/15226510701373213)
Giri J, Bhosale R, Huang G, Pandey BK, Parker H, Zappala S, Yang J, Dievart A, Bureau C, Ljung K, Price A, Rose T, Larrieu A, Mairhofer S, Sturrock CJ, White P, Dupuy L, Hawkesford M, Perin C, Liang W, Peret B, Hodgman CT, Lynch J, Wissuwa M, Zhang D, Pridmore T, Mooney SJ, Guiderdoni E, Swarup R, Bennett MJ (2018) Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nat Commun 9:1408. https://doi.org/10.1038/s41467-018-03850-4. (PMID: 10.1038/s41467-018-03850-4296509675897452)
Haling RE, Brown LK, Bengough AG, Young IM, Hallett PD, White PJ, George TS (2013) Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength. J Exp Bot 64:3711–3721. https://doi.org/10.1093/jxb/ert200. (PMID: 10.1093/jxb/ert20023861547)
Hasan BR (1996) Phosphorus Status of Soils in India. Crops 10:4–5.
Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A (2019) Moving beyond P values: data analysis with estimation graphics. Nat Methods 16:565–566. https://doi.org/10.1038/s41592-019-0470-3. (PMID: 10.1038/s41592-019-0470-331217592)
Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Circ - Calif Agric Exp Stn 347:2nd edit.
Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A (2018) Root hairs increase rhizosphere extension and carbon input to soil. Ann Bot 121:61–69. https://doi.org/10.1093/aob/mcx127. (PMID: 10.1093/aob/mcx12729267846)
Huang G, Liang W, Sturrock CJ, Pandey BK, Giri J, Mairhofer S, Wang D, Muller L, Tan H, York LM, Yang J, Song Y, Kim YJ, Qiao Y, Xu J, Kepinski S, Bennett MJ, Zhang D (2018) Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nat Commun 9:2346. https://doi.org/10.1038/s41467-018-04710-x. (PMID: 10.1038/s41467-018-04710-x298920325995806)
Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729. https://doi.org/10.1111/tpj.12173. (PMID: 10.1111/tpj.1217323489434)
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:5–9. https://doi.org/10.1093/nar/gkn201. (PMID: 10.1093/nar/gkn201)
Jungk A (2001) Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164:121–129. (PMID: 10.1002/1522-2624(200104)164:2<121::AID-JPLN121>3.0.CO;2-6)
Kirik V, Simon M, Huelskamp M, Schiefelbein J (2004) The ENHANCER of TRY and CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev Biol 268:506–513. https://doi.org/10.1016/j.ydbio.2003.12.037. (PMID: 10.1016/j.ydbio.2003.12.03715063185)
Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015a) A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea. Sci Rep 5:11166. https://doi.org/10.1038/srep11166. (PMID: 10.1038/srep11166260583684461920)
Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015b) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162. https://doi.org/10.3389/fpls.2015.00162. (PMID: 10.3389/fpls.2015.00162258739204379880)
Kujur A, Upadhyaya HD, Shree T, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015c) Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea. Sci Rep 5:9468. https://doi.org/10.1038/srep09468. (PMID: 10.1038/srep09468259420045386344)
Leavitt RG (1904) Trichomes of the root in vascular cryptogams and angiosperms. Proc Boston Soc Nat Hist 31:273–313.
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: Genome association and prediction integrated tool. Bioinformatics 28:2397–2399. https://doi.org/10.1093/bioinformatics/bts444. (PMID: 10.1093/bioinformatics/bts44422796960)
Liu C, Zhang F, Zhang D et al (2018) Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Sci Rep 8:1978. https://doi.org/10.1038/s41598-018-20456-4. (PMID: 10.1038/s41598-018-20456-4293865875792640)
Lynch JP, Brown KM (2001) Topsoil foraging - An architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237. https://doi.org/10.1023/A:1013324727040. (PMID: 10.1023/A:1013324727040)
Macdonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world ’ s croplands. Proc Natl Acad Sci 108:3086–3091. https://doi.org/10.1073/pnas.1010808108. (PMID: 10.1073/pnas.101080810821282605)
Miguel MA (2004) Genotypic variation in root hairs and phosphorus efficiency in common bean (Phaseolus vulgaris L.). Doctoral desertation, Pennsylvania State University.
Miguel MA, Postma JA, Lynch JP (2015) Phene synergism between root hair length and basal root growth angle for phosphorus Acquisition. Plant Physiol 167:1430–1439. https://doi.org/10.1104/pp.15.00145. (PMID: 10.1104/pp.15.00145256995874378183)
Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci U S A 102:7760–7765. https://doi.org/10.1073/pnas.0500778102. (PMID: 10.1073/pnas.0500778102158946201140425)
Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM (2011) SIZ1 Regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiol 155:1000–1012. https://doi.org/10.1104/pp.110.165191. (PMID: 10.1104/pp.110.16519121156857)
Muller M, Schmidt W (2004) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol 134:409–419. https://doi.org/10.1104/pp.103.029066. (PMID: 10.1104/pp.103.02906614730071371035)
Nestler J, Wissuwa M, Bell RW (2016) Superior root hair formation confers root efficiency in some , but not all , rice genotypes upon P deficiency. Front Plant Sci 7:1935. https://doi.org/10.3389/fpls.2016.01935. (PMID: 10.3389/fpls.2016.01935280664875174101)
Pandey BK, Mehra P, Verma L, Bhadouria J, Giri J (2017) OsHAD1 , a Haloacid Dehalogenase-Like APase , enhances phosphate accumulation. Plant Physiol 174:2316–2332. https://doi.org/10.1104/pp.17.00571.
Pang J, Bansal R, Zhao H, Bohuon E, Lambers H, Ryan MH, Ranathunge K, Siddique KHM (2018a) The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytol 219:518–529. https://doi.org/10.1111/nph.15200. (PMID: 10.1111/nph.1520029756639)
Pang J, Zhao H, Bansal R, Bohuon E, Lambers H, Ryan MH, Siddique KHM (2018b) Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes. Plant Cell Environ 41:2069–2079. https://doi.org/10.1111/pce.13139. (PMID: 10.1111/pce.1313929315636)
Pei W, Du F, Zhang Y et al (2012) Control of the actin cytoskeleton in root hair development. Plant Sci 187:10–18. https://doi.org/10.1016/j.plantsci.2012.01.008. (PMID: 10.1016/j.plantsci.2012.01.00822404828)
Pires ND, Yi K, Breuninger H, Catarino B, Menand B, Dolan L (2013) Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proc Natl Acad Sci U S A 110:9571–9576. https://doi.org/10.1073/pnas.1305457110. (PMID: 10.1073/pnas.1305457110236906183677440)
Pothuluri JV, Kissel DE, Whitney DA, Thien SJ (1986) Phosphorus uptake from soil layers having different soil test phosphorus levels. Agron J 78:991–994. https://doi.org/10.2134/agronj1986.00021962007800060012x. (PMID: 10.2134/agronj1986.00021962007800060012x)
Ringli C, Baumberger N, Diet A, Frey B, Keller B (2002) ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol 129:1464–1472. https://doi.org/10.1104/pp.005777.1464. (PMID: 10.1104/pp.005777.146412177460166735)
Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W (2016) The regulation and plasticity of root hair patterning and morphogenesis. Development 143:1848–1858. https://doi.org/10.1242/dev.132845. (PMID: 10.1242/dev.13284527246711)
Sandhu N, Subedi SR, Singh VK, Sinha P, Kumar S, Singh SP, Ghimire SK, Pandey M, Yadaw RB, Varshney RK, Kumar A (2019a) Deciphering the genetic basis of root morphology , nutrient uptake , yield , and yield-related traits in rice under dry direct-seeded cultivation systems. Sci Rep 9:9334. https://doi.org/10.1038/s41598-019-45770-3. (PMID: 10.1038/s41598-019-45770-3312493386597570)
Sandhu N, Yadaw RB, Chaudhary B, Prasai H, Iftekharuddaula K, Venkateshwarlu C, Annamalai A, Xangsayasane P, Battan KR, Ram M, Cruz MTS, Pablico P, Maturan PC, Raman KA, Catolos M, Kumar A (2019b) Evaluating the performance of rice genotypes for improving yield and adaptability under direct seeded aerobic cultivation conditions. Front Plant Sci 10:159. https://doi.org/10.3389/fpls.2019.00159. (PMID: 10.3389/fpls.2019.00159308283436384261)
Scheiner SM, Lyman RF (1989) The genetics of phenotypic plasticity I. Heritability. J Evol Biol 2:95–107. https://doi.org/10.1046/j.1420-9101.1989.2020095.x. (PMID: 10.1046/j.1420-9101.1989.2020095.x)
Song L, Yu H, Dong J, Che X, Jiao Y, Liu D (2016) The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation. PLoS Genet 12:e1006194. https://doi.org/10.1371/journal.pgen.1006194. (PMID: 10.1371/journal.pgen.1006194274279114948871)
Stetter MG, Schmid K, Ludewig U (2015) Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana. PLoS One 10:e0120604. https://doi.org/10.1371/journal.pone.0120604. (PMID: 10.1371/journal.pone.0120604257819674364354)
Subedi SR, Sandhu N, Singh VK, Sinha P, Kumar S, Singh SP, Ghimire SK, Pandey M, Yadaw RB, Varshney RK, Kumar A (2019) Genome-wide association study reveals significant genomic regions for improving yield, adaptability of rice under dry direct seeded cultivation condition. BMC Genomics 20:471. https://doi.org/10.1186/s12864-019-5840-9. (PMID: 10.1186/s12864-019-5840-9311820166558851)
Takahashi M, Umetsu K, Oono Y, Higaki T, Blancaflor EB, Rahman A (2017) Small acidic protein 1 and SCFTIR1 ubiquitin proteasome pathway act in concert to induce 2,4-dichlorophenoxyacetic acid-mediated alteration of actin in Arabidopsis roots. Plant J 89:940–956. https://doi.org/10.1111/tpj.13433. (PMID: 10.1111/tpj.1343327885735)
Ühlken C, Horvath B, Stadler R, Sauer N, Weingartner M (2014) MAIN-LIKE1 is a crucial factor for correct cell division and differentiation in Arabidopsis thaliana. Plant J 78:107–120. https://doi.org/10.1111/tpj.12455. (PMID: 10.1111/tpj.1245524635680)
Upadhyaya HD, Dwivedi SL, Baum M et al (2008) Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol 8:106. https://doi.org/10.1186/1471-2229-8-106. (PMID: 10.1186/1471-2229-8-106189221892583987)
Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246. https://doi.org/10.1038/nbt.2491. (PMID: 10.1038/nbt.249123354103)
Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD, Yang W, Bajaj P, Cubry P, Rathore A, Jian J, Doddamani D, Khan AW, Garg V, Chitikineni A, Xu D, Gaur PM, Singh NP, Chaturvedi SK, Nadigatla GVPR, Krishnamurthy L, Dixit GP, Fikre A, Kimurto PK, Sreeman SM, Bharadwaj C, Tripathi S, Wang J, Lee SH, Edwards D, Polavarapu KKB, Penmetsa RV, Crossa J, Nguyen HT, Siddique KHM, Colmer TD, Sutton T, von Wettberg E, Vigouroux Y, Xu X, Liu X (2019) Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat Genet 51:857–864. https://doi.org/10.1038/s41588-019-0401-3. (PMID: 10.1038/s41588-019-0401-331036963)
Vijayakumar P, Datta S, Dolan L (2016) ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth. New Phytol 212:944–953. https://doi.org/10.1111/nph.14095. (PMID: 10.1111/nph.14095274526385111604)
Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York. (PMID: 10.1007/978-3-319-24277-4)
Williamson LC, Ribrioux SPCP, Fitter AH, Ottoline Leyser HM (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882. https://doi.org/10.1104/pp.126.2.875. (PMID: 10.1104/pp.126.2.87511402214111176)
Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29. https://doi.org/10.1007/s11104-005-0693-1. (PMID: 10.1007/s11104-005-0693-1)
Yano K, Shibata S, Chen WL, Sato S, Kaneko T, Jurkiewicz A, Sandal N, Banba M, Imaizumi-Anraku H, Kojima T, Ohtomo R, Szczyglowski K, Stougaard J, Tabata S, Hayashi M, Kouchi H, Umehara Y (2009) CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume-Rhizobium symbiosis. Plant J 60:168–180. https://doi.org/10.1111/j.1365-313X.2009.03943.x. (PMID: 10.1111/j.1365-313X.2009.03943.x19508425)
Yi K, Menand B, Bell E, Dolan L (2010) A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat Genet 42:264–267. https://doi.org/10.1038/ng.529. (PMID: 10.1038/ng.52920139979)
Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360. https://doi.org/10.1038/ng.546. (PMID: 10.1038/ng.546202085352931336)
Zhang C, Simpson RJ, Kim CM, Warthmann N, Delhaize E, Dolan L, Byrne ME, Wu Y, Ryan PR (2018) Do longer root hairs improve phosphorus uptake? Testing the hypothesis with transgenic Brachypodium distachyon lines overexpressing endogenous RSL genes. New Phytol 217:1654–1666. https://doi.org/10.1111/nph.14980. (PMID: 10.1111/nph.1498029341123)
Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant Soil 270:299–310. https://doi.org/10.1007/s11104-004-1697-y. (PMID: 10.1007/s11104-004-1697-y)
Zhu J, Zhang C, Lynch JP (2010) The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Funct Plant Biol 37:313–322. (PMID: 10.1071/FP09197)
Zygalakis KC, Kirk GJD, Jones DL, Wissuwa M, Roose T (2011) A dual porosity model of nutrient uptake by root hairs. New Phytol 192:676–688. https://doi.org/10.1111/j.1469-8137.2011.03840.x. (PMID: 10.1111/j.1469-8137.2011.03840.x21827499)
معلومات مُعتمدة: BT/010/IYBA/2016/04 DBT-Innovative Young Biotechnologist Award (IYBA)
فهرسة مساهمة: Keywords: GWAS; Legume; P-uptake; Phosphate deficiency; Root hair; Root system architecture
المشرفين على المادة: 0 (Phosphates)
تواريخ الأحداث: Date Created: 20200906 Date Completed: 20210728 Latest Revision: 20210728
رمز التحديث: 20221213
DOI: 10.1007/s10142-020-00749-6
PMID: 32892252
قاعدة البيانات: MEDLINE
الوصف
تدمد:1438-7948
DOI:10.1007/s10142-020-00749-6