دورية أكاديمية

Enhancing mucosal immunity by transient microbiota depletion.

التفاصيل البيبلوغرافية
العنوان: Enhancing mucosal immunity by transient microbiota depletion.
المؤلفون: Becattini S; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. simone.becattini@gmail.com., Littmann ER; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.; Duchossois Family Institute, University of Chicago, Chicago, IL, 60606, USA., Seok R; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA., Amoretti L; Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA., Fontana E; Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA., Wright R; Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA., Gjonbalaj M; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA., Leiner IM; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.; Duchossois Family Institute, University of Chicago, Chicago, IL, 60606, USA., Plitas G; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.; Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.; Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA., Hohl TM; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.; Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA., Pamer EG; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.; Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.; Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.; Duchossois Family Institute, University of Chicago, Chicago, IL, 60606, USA.
المصدر: Nature communications [Nat Commun] 2020 Sep 08; Vol. 11 (1), pp. 4475. Date of Electronic Publication: 2020 Sep 08.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Immunity, Mucosal*/drug effects, Gastrointestinal Microbiome/*immunology, Administration, Oral ; Animals ; Antigens/administration & dosage ; CD8-Positive T-Lymphocytes/immunology ; Chemotaxis/immunology ; Female ; Gastrointestinal Microbiome/drug effects ; Host Microbial Interactions/immunology ; Immunologic Memory ; Listeria monocytogenes/growth & development ; Listeria monocytogenes/immunology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Ovalbumin/administration & dosage ; Streptomycin/administration & dosage
مستخلص: Tissue resident memory CD8 +  T cells (Trm) are poised for immediate reactivation at sites of pathogen entry and provide optimal protection of mucosal surfaces. The intestinal tract represents a portal of entry for many infectious agents; however, to date specific strategies to enhance Trm responses at this site are lacking. Here, we present TMDI (Transient Microbiota Depletion-boosted Immunization), an approach that leverages antibiotic treatment to temporarily restrain microbiota-mediated colonization resistance, and favor intestinal expansion to high densities of an orally-delivered Listeria monocytogenes strain carrying an antigen of choice. By augmenting the local chemotactic gradient as well as the antigenic load, this procedure generates a highly expanded pool of functional, antigen-specific intestinal Trm, ultimately enhancing protection against infectious re-challenge in mice. We propose that TMDI is a useful model to dissect the requirements for optimal Trm responses in the intestine, and also a potential platform to devise novel mucosal vaccination approaches.
References: Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009). (PMID: 19305395)
Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012). (PMID: 230758483499630)
Enamorado, M. et al. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8(+) T cells. Nat. Commun. 8, 16073 (2017). (PMID: 287144655520051)
Park, S. L. et al. Tissue-resident memory CD8(+) T cells promote melanoma-immune equilibrium in skin. Nature. https://doi.org/10.1038/s41586-018-0812-9 (2018).
Le, D. T., Dubenksy, T. W. Jr. & Brockstedt, D. G. Clinical development of Listeria monocytogenes-based immunotherapies. Semin. Oncol. 39, 311–322 (2012). (PMID: 225950543574585)
Johnson, P. V., Blair, B. M., Zeller, S., Kotton, C. N. & Hohmann, E. L. Attenuated Listeria monocytogenes vaccine vectors expressing influenza A nucleoprotein: preclinical evaluation and oral inoculation of volunteers. Microbiol. Immunol. 55, 304–317 (2011). (PMID: 213383843082616)
Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928–943 e911 (2017). (PMID: 28215708)
Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019). (PMID: 30675064)
Proietti, M. et al. ATP released by intestinal bacteria limits the generation of protective IgA against enteropathogens. Nat. Commun. https://doi.org/10.1038/s41467-018-08156-z (2019).
Pamer, E. G. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 352, 535–538 (2016). (PMID: 271260354984266)
Becattini, S. et al. Commensal microbes provide first line defense against Listeria monocytogenes infection. J. Exp. Med. 214, 1973–1989 (2017). (PMID: 285880165502438)
Travier, L. et al. ActA promotes Listeria monocytogenes aggregation, intestinal colonization and carriage. PLoS Pathog. 9, e1003131 (2013). (PMID: 233826753561219)
Louie, A., Zhang, T., Becattini, S., Waldor, M. K. & Portnoy, D. A. A multiorgan trafficking circuit provides purifying selection of Listeria monocytogenes virulence genes. mBio 10, e02948–02919 (2019). (PMID: 318482896918090)
Ng, K. M. et al. Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. Cell Host Microbe 26, 650–665.e654 (2019). (PMID: 31726029)
Gerlach, C. et al. The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45, 1270–1284 (2016). (PMID: 279396715177508)
Gebhardt, T., Palendira, U., Tscharke, D. C. & Bedoui, S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol. Rev. 283, 54–76 (2018). (PMID: 29664571)
Bergsbaken, T. & Bevan, M. J. Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8 T cells responding to infection. Nat. Immunol. https://doi.org/10.1038/ni.3108 (2015).
Mercado, R. et al. Early programming of T cell populations responding to bacterial infection. J. Immunol. 165, 6833–6839 (2000). (PMID: 11120806)
Wong, P., Lara-Tejero, M., Ploss, A., Leiner, I. & Pamer, E. G. Rapid development of T cell memory. J. Immunol. 172, 7239–7245 (2004). (PMID: 15187098)
Prlic, M., Hernandez-Hoyos, G. & Bevan, M. J. Duration of the initial TCR stimulus controls the magnitude but not functionality of the CD8+ T cell response. J. Exp. Med. 203, 2135–2143 (2006). (PMID: 169086262118397)
Becattini, S. & Pamer, E. G. Multifaceted defense against listeria monocytogenes in the gastro-intestinal lumen. Pathogens. https://doi.org/10.3390/pathogens7010001 (2017).
Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015). (PMID: 262055834889009)
Zehn, D., Roepke, S., Weakly, K., Bevan, M. J. & Prlic, M. Inflammation and TCR signal strength determine the breadth of the T cell response in a bim-dependent manner. J. Immunol. 192, 200–205 (2014). (PMID: 24273000)
Haring, J. S., Badovinac, V. P. & Harty, J. T. Inflaming the CD8+ T cell response. Immunity 25, 19–29 (2006). (PMID: 16860754)
Serbina, N. V., Shi, C. & Pamer, E. G. Monocyte-mediated immune defense against murine Listeria monocytogenes infection. Adv. Immunol. 113, 119–134 (2012). (PMID: 222445813985089)
Shi, C. et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34, 590–601 (2011). (PMID: 214583073081416)
Kurihara, T., Warr, G., Loy, J. & Bravo, R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J. Exp. Med. 186, 1757–1762 (1997). (PMID: 93625352199145)
Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311–317 (2006). (PMID: 16462739)
Jones, G. S. & D’Orazio, S. E. Monocytes are the predominant cell type associated with listeria monocytogenes in the gut, but they do not serve as an intracellular growth niche. J. Immunol. 198, 2796–2804 (2017). (PMID: 282135025360488)
Bergsbaken, T., Bevan, M. J. & Fink, P. J. Local inflammatory cues regulate differentiation and persistence of CD8(+) tissue-resident memory T cells. Cell Rep. 19, 114–124 (2017). (PMID: 283803515444811)
Henrickson, S. E. et al. Antigen availability determines CD8(+) T cell-dendritic cell interaction kinetics and memory fate decisions. Immunity 39, 496–507 (2013). (PMID: 240543283914670)
Blair, D. A. et al. Duration of antigen availability influences the expansion and memory differentiation of T cells. J. Immunol. 187, 2310–2321 (2011). (PMID: 217756793159832)
Russell, M. S. et al. A reduced antigen load in vivo, rather than weak inflammation, causes a substantial delay in CD8+ T cell priming against Mycobacterium bovis (Bacillus Calmette-Guerin). J. Immunol. 179, 211–220 (2007). (PMID: 175790404015951)
Ploss, A. et al. Promiscuity of MHC class Ib-restricted T cell responses. J. Immunol. 171, 5948–5955 (2003). (PMID: 146341062791464)
Lenz, L. L., Dere, B. & Bevan, M. J. Identification of an H2-M3-restricted listeria epitope: implications for antigen presentation by M3. Immunity 5, 63–72 (1996). (PMID: 87588952778046)
Sheridan, B. S. et al. Oral infection drives a distinct population of intestinal resident memory CD8(+) T cells with enhanced protective function. Immunity 40, 747–757 (2014). (PMID: 247929104045016)
Wood, L. M. & Paterson, Y. Attenuated Listeria monocytogenes: a powerful and versatile vector for the future of tumor immunotherapy. Front Cell Infect. Microbiol 4, 51 (2014). (PMID: 248607894026700)
Sheridan, B. S. et al. gammadelta T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39, 184–195 (2013). (PMID: 238900713749916)
Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014). (PMID: 25234148)
Beura, L. K. & Masopust, D. SnapShot: resident memory T cells. Cell 157, 1488–1488 e1481 (2014). (PMID: 24906159)
Zhang, N. & Bevan, M. J. Transforming growth factor-beta signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013). (PMID: 240760493805703)
Lycke, N. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 12, 592–605 (2012). (PMID: 22828912)
Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014). (PMID: 251700494449618)
Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8(+) T cells. Nat. Immunol. 14, 509–513 (2013). (PMID: 235427403631432)
Ariotti, S. et al. T cell memory. Skin-resident memory CD8(+) T cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105 (2014). (PMID: 25278612)
Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).
Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013). (PMID: 242267733869884)
Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013). (PMID: 24226770)
Proietti, M. et al. ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer’s patches to promote host-microbiota mutualism. Immunity 41, 789–801 (2014). (PMID: 25464855)
Hepworth, M. R. et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013). (PMID: 36998603699860)
Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013). (PMID: 240963374194195)
Muschaweckh, A. et al. Antigen-dependent competition shapes the local repertoire of tissue-resident memory CD8+ T cells. J. Exp. Med. 213, 3075–3086 (2016). (PMID: 278994445154944)
Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J. Exp. Med. 213, 1819–1834 (2016). (PMID: 49950734995073)
Richer, M. J., Nolz, J. C. & Harty, J. T. Pathogen-specific inflammatory milieux tune the antigen sensitivity of CD8(+) T cells by enhancing T cell receptor signaling. Immunity 38, 140–152 (2013). (PMID: 23260194)
Smith, L. K. et al. Interleukin-10 directly inhibits CD8(+) T Cell function by enhancing N-Glycan branching to decrease antigen sensitivity. Immunity. https://doi.org/10.1016/j.immuni.2018.01.006 (2018).
Flickinger, J. C., Jr., Rodeck, U. & Snook, A. E. Listeria monocytogenes as a vector for cancer immunotherapy: current understanding and progress. Vaccines. https://doi.org/10.3390/vaccines6030048 (2018).
Angelakopoulos, H. et al. Safety and shedding of an attenuated strain of listeria monocytogenes with a deletion of actA/plcB in adult volunteers: a dose escalation study of oral inoculation. Infect. Immun. 70, 3592–3601 (2002). (PMID: 12065500128066)
Deng, W. et al. Recombinant Listeria promotes tumor rejection by CD8(+) T cell-dependent remodeling of the tumor microenvironment. Proc. Natl Acad. Sci. USA 115, 8179–8184 (2018). (PMID: 30038013)
Zhao, X., Li, Z., Gu, B. & Frankel, F. R. Pathogenicity and immunogenicity of a vaccine strain of Listeria monocytogenes that relies on a suicide plasmid to supply an essential gene product. Infect. Immun. 73, 5789–5798 (2005). (PMID: 161132971231070)
Thompson, R. J., Bouwer, H. G., Portnoy, D. A. & Frankel, F. R. Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth. Infect. Immun. 66, 3552–3561 (1998). (PMID: 9673233108386)
Becattini, S., Taur, Y. & Pamer, E. G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22, 458–478 (2016). (PMID: 271785274885777)
Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10, eaap9489 (2018). (PMID: 302579566468978)
Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).
Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006). (PMID: 17008531)
Pagès, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005). (PMID: 16371631)
Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512 e1495 (2019). (PMID: 310973426527362)
Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017). (PMID: 286787785577644)
Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017). (PMID: 28678784)
Brockstedt, D. G. et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicit. Proc. Natl Acad. Sci. USA 101, 13832–13837 (2004). (PMID: 15365184)
Pope, C. et al. Organ-specific regulation of the CD8 T cell response to listeria monocytogenes infection. J. Immunol. 166, 3402–3409 (2001). (PMID: 11207297)
Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209–222 (2014). (PMID: 243851504428344)
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012). (PMID: 224024013400413)
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013). (PMID: 2395577223955772)
Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015). (PMID: 26139637)
DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ. Microbiol. 72, 5069–5072 (2006). (PMID: 168205071489311)
معلومات مُعتمدة: P30 CA008748 United States CA NCI NIH HHS; R01 AI042135 United States AI NIAID NIH HHS; United States HHMI Howard Hughes Medical Institute
المشرفين على المادة: 0 (Antigens)
9006-59-1 (Ovalbumin)
Y45QSO73OB (Streptomycin)
تواريخ الأحداث: Date Created: 20200909 Date Completed: 20200921 Latest Revision: 20240428
رمز التحديث: 20240428
مُعرف محوري في PubMed: PMC7479140
DOI: 10.1038/s41467-020-18248-4
PMID: 32901029
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-020-18248-4