دورية أكاديمية

Field transcriptome analysis reveals a molecular mechanism for cassava-flowering in a mountainous environment in Southeast Asia.

التفاصيل البيبلوغرافية
العنوان: Field transcriptome analysis reveals a molecular mechanism for cassava-flowering in a mountainous environment in Southeast Asia.
المؤلفون: Tokunaga H; Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan. hiroki.tokunaga@riken.jp.; International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam. hiroki.tokunaga@riken.jp., Quynh DTN; International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.; National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam., Anh NH; International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.; National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam., Nhan PT; Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam., Matsui A; Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan., Takahashi S; Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan., Tanaka M; Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan., Anh NM; International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.; JICA Vietnam Office, Hanoi, Vietnam., Van Dong N; International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.; National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam., Ham LH; International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.; National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam., Higo A; Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan., Hoa TM; Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam., Ishitani M; International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.; International Center for Tropical Agriculture (CIAT), Cali, Colombia., Minh NBN; Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam., Hy NH; Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam., Srean P; University of Battambang (UBB), Battambang, Cambodia., Thu VA; Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan.; International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.; National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam., Tung NB; Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam., Vu NA; International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.; National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam., Yamaguchi K; Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan., Tsuji H; Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan., Utsumi Y; Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan.; International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam., Seki M; Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan. motoaki.seki@riken.jp.; International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam. motoaki.seki@riken.jp.; Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan. motoaki.seki@riken.jp.; Cluster for Pioneering Research, RIKEN, Saitama, Japan. motoaki.seki@riken.jp.
المصدر: Plant molecular biology [Plant Mol Biol] 2022 Jun; Vol. 109 (3), pp. 233-248. Date of Electronic Publication: 2020 Sep 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Country of Publication: Netherlands NLM ID: 9106343 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-5028 (Electronic) Linking ISSN: 01674412 NLM ISO Abbreviation: Plant Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht : Kluwer Academic
Original Publication: The Hague ; Boston : Martinus Nijhoff/Dr. W. Junk, 1981-
مواضيع طبية MeSH: Arabidopsis*/genetics , Arabidopsis*/metabolism , Manihot*/metabolism, Asia, Southeastern ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Plant Proteins/genetics ; Plant Proteins/metabolism
مستخلص: Key Message: The field survey in this article showed in 'KU50', a popular variety and late-branching type of cassava in Southeast Asia, that flowering rarely occurs in normal-field conditions in Southeast Asia but is strongly induced in the dry season in the mountainous region. Flowering time is correlated with the expression patterns of MeFT1 and homologs of Arabidopsis GI, PHYA, and NF-Ys. Cassava (Manihot esculenta Crantz) is a tropical crop that is propagated vegetatively rather than sexually by seed. Flowering rarely occurs in the erect-type variety grown in Southeast Asia, but it is known that cassava produces flowers every year in mountainous regions. Data pertaining to the effect of environmental factors on flowering time and gene expression in cassava, however, is limited. The aim of the present study was to determine the kinds of environmental conditions that regulate flowering time in cassava and the underlying molecular mechanisms. The flowering status of KU50, a popular variety in Southeast Asia and late-branching type of cassava, was monitored in six fields in Vietnam and Cambodia. At non-flowering and flowering field locations in North Vietnam, the two FLOWERING LOCUS T (FT)-like genes, MeFT1 and MeFT2, were characterized by qPCR, and the pattern of expression of flowering-related genes and genes responsive to environmental signals were analyzed by using RNA sequencing data from time-series samples. Results indicate that cassava flowering was induced in the dry season in the mountain region, and that flowering time was correlated with the expression of MeFT1, and homologs of Arabidopsis GI, PHYA, and NF-Ys. Based upon these data, we hypothesize that floral induction in cassava is triggered by some conditions present in the mountain regions during the dry season.
(© 2020. Springer Nature B.V.)
References: Adeyemo OS, Chavarriaga P, Tohme J, Fregene M, Davis SJ, Setter TL (2017) Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz). PLoS ONE 12:e0181460. https://doi.org/10.1371/journal.pone.0181460. (PMID: 10.1371/journal.pone.0181460287536685533431)
Adeyemo OS, Hyde PT, Setter TL (2019) Identification of FT family genes that respond to photoperiod, temperature and genotype in relation to flowering in cassava (Manihot esculenta, Crantz). Plant Reprod 32:181–191. https://doi.org/10.1007/s00497-018-00354-5. (PMID: 10.1007/s00497-018-00354-530543044)
Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152. https://doi.org/10.1126/science.284.5423.2148. (PMID: 10.1126/science.284.5423.214810381874)
Aziz ZA (1984) Observations on the effect of low temperature on floral induction in cassava MARDI Research Bulletin (Malaysia).
Blumel M, Dally N, Jung C (2015) Flowering time regulation in crops-what did we learn from Arabidopsis? Curr Opin Biotechnol 32:121–129. https://doi.org/10.1016/j.copbio.2014.11.023. (PMID: 10.1016/j.copbio.2014.11.02325553537)
Bull SE, Alder A, Barsan C, Kohler M, Hennig L, Gruissem W, Vanderschuren H (2017) FLOWERING LOCUS T triggers early and fertile flowering in glasshouse cassava (Manihot esculenta Crantz). Plants (Basel). https://doi.org/10.3390/plants6020022. (PMID: 10.3390/plants6020022)
Ceballos H, Iglesias CA, Perez JC, Dixon AG (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516. https://doi.org/10.1007/s11103-004-5010-5. (PMID: 10.1007/s11103-004-5010-515630615)
Ceballos H, Jaramillo J, Salazar S, Pineda L, Calle F, Setter T (2017) Induction of flowering in cassava through grafting. J Plant Breed Crop Sci 9:19–29. https://doi.org/10.5897/jpbcs2016.0617. (PMID: 10.5897/jpbcs2016.0617)
Cerdan PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423:881–885. https://doi.org/10.1038/nature01636. (PMID: 10.1038/nature0163612815435)
Chavarriaga-Aguirre P, Halsey M (2005) Cassava (Manihot esculenta Crantz): reproductive biology and practices for confinement of experimental field trials. In: Report prepared for the Program for Biosafety Systems., Washington, D.C.: Program for Biosafety Systems.
Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90:708–719. https://doi.org/10.1111/tpj.13461. (PMID: 10.1111/tpj.1346127995671)
Corbesier L et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. https://doi.org/10.1126/science.1141752. (PMID: 10.1126/science.114175217446353)
FAO (2013) Save and grow: cassava A guide to sustainable production intensification.
Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166. https://doi.org/10.1199/tab.0166. (PMID: 10.1199/tab.0166242734633833200)
Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550, 550 e551–552. https://doi.org/10.1016/j.cell.2010.04.024.
Fowler S et al (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688. https://doi.org/10.1093/emboj/18.17.4679. (PMID: 10.1093/emboj/18.17.4679104696471171541)
Guillaumot D et al (2009) The Arabidopsis TSPO-related protein is a stress and abscisic acid-regulated, endoplasmic reticulum-Golgi-localized membrane protein. Plant J 60:242–256. https://doi.org/10.1111/j.1365-313X.2009.03950.x. (PMID: 10.1111/j.1365-313X.2009.03950.x19548979)
Hershey CH (1987) Cassava breeding: a multidisciplinary review. CIAT, Cali.
Howeler RH, Maung Aye T (2014) Sustainable management of cassava in Asia from research to practice. International Center for Tropical Agriculture (CIAT); The Nippon Foundation, p 168.
Inigo S, Alvarez MJ, Strasser B, Califano A, Cerdan PD (2012) PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J 69:601–612. https://doi.org/10.1111/j.1365-313X.2011.04815.x. (PMID: 10.1111/j.1365-313X.2011.04815.x21985558)
Keating BA, Evenson JP, Fukai S (1982) Environmental effects on growth and development of cassava (Manihot esculenta Crantz.) I Crop development. Field Crops Res 5:271–281. https://doi.org/10.1016/0378-4290(82)90030-2. (PMID: 10.1016/0378-4290(82)90030-2)
Kim SY (2005) The role of ABF family bZIP class transcription factors in stress response. Physiologia Plant 126:527. https://doi.org/10.1111/j.1399-3054.2005.00601.x. (PMID: 10.1111/j.1399-3054.2005.00601.x)
Kobayashi MJ, Takeuchi Y, Kenta T, Kume T, Diway B, Shimizu KK (2013) Mass flowering of the tropical treeShorea beccarianawas preceded by expression changes in flowering and drought-responsive genes. Mol Ecol 22:4767–4782. https://doi.org/10.1111/mec.12344. (PMID: 10.1111/mec.12344236511193817532)
Laubinger S et al (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133:4608–4608. https://doi.org/10.1242/dev.02691. (PMID: 10.1242/dev.02691)
Leonardo SS, Diniz RP, Neves RdJ, Alves AAC, Eder JdO (2018) Grafting as a strategy to increase flowering of cassava. Sci Hortic 240:544–551. https://doi.org/10.1016/j.scienta.2018.06.070. (PMID: 10.1016/j.scienta.2018.06.070)
Li W, Herrera-Estrella L, Tran LP (2016) The Yin-Yang of cytokinin homeostasis and drought acclimation/adaptation. Trends Plant Sci 21:548–550. https://doi.org/10.1016/j.tplants.2016.05.006. (PMID: 10.1016/j.tplants.2016.05.00627270336)
Liu H et al (2013) Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Proc Natl Acad Sci USA 110:17582–17587. https://doi.org/10.1073/pnas.1308987110. (PMID: 10.1073/pnas.1308987110241015053808666)
Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322:1535–1539. https://doi.org/10.1126/science.1163927. (PMID: 10.1126/science.116392718988809)
Luo X et al (2018) The NUCLEAR FACTOR-CONSTANS complex antagonizes Polycomb repression to de-repress FLOWERING LOCUS T expression in response to inductive long days in Arabidopsis. Plant J 95:17–29. https://doi.org/10.1111/tpj.13926. (PMID: 10.1111/tpj.1392629667247)
Mockler T, Yang H, Yu X, Parikh D, Yc C, Dolan S, Lin C (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci 100:2140–2145. https://doi.org/10.1073/pnas.0437826100. (PMID: 10.1073/pnas.043782610012578985149972)
Nguyen KH et al (2016) Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci USA 113:3090–3095. https://doi.org/10.1073/pnas.1600399113. (PMID: 10.1073/pnas.1600399113268841754801291)
Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263. https://doi.org/10.1104/pp.108.122465. (PMID: 10.1104/pp.108.122465185029732442551)
Olasanmi B (2018) Crossability among five cassava (Manihot Esculenta CRANTZ) varieties. Mod Concepts Dev Agron. https://doi.org/10.31031/mcda.2018.02.000543. (PMID: 10.31031/mcda.2018.02.000543)
Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schoffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136:3148–3158. https://doi.org/10.1104/pp.104.042606. (PMID: 10.1104/pp.104.04260615466240523375)
Petroni K et al (2012) The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Plant Cell 24:4777–4792. https://doi.org/10.1105/tpc.112.105734. (PMID: 10.1105/tpc.112.105734232755783556957)
Poethig RS (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 250:923–930. https://doi.org/10.1126/science.250.4983.923. (PMID: 10.1126/science.250.4983.92317746915)
Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847. (PMID: 10.1016/0092-8674(95)90288-0)
Rasheed S, Bashir K, Matsui A, Tanaka M, Seki M (2016) Transcriptomic analysis of soil-grown Arabidopsis thaliana roots and shoots in response to a drought stress. Front Plant Sci 7:180. https://doi.org/10.3389/fpls.2016.00180. (PMID: 10.3389/fpls.2016.00180269417544763085)
Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162:1706–1719. https://doi.org/10.1104/pp.113.217729. (PMID: 10.1104/pp.113.217729237198903707542)
Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L (2016) ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot 67:6309–6322. https://doi.org/10.1093/jxb/erw384. (PMID: 10.1093/jxb/erw384277334405181575)
Rock CD, Zeevaart JA (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci 88:7496. (PMID: 10.1073/pnas.88.17.7496)
Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265. https://doi.org/10.1126/science.1146994. (PMID: 10.1126/science.1146994178724103709017)
Shimizu KK, Kudoh H, Kobayashi MJ (2011) Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. Ann Bot 108:777–787. https://doi.org/10.1093/aob/mcr180. (PMID: 10.1093/aob/mcr180218522753170158)
Song YH et al (2018) Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat Plants 4:824–835. https://doi.org/10.1038/s41477-018-0253-3. (PMID: 10.1038/s41477-018-0253-3302502776195122)
Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66:441–464. https://doi.org/10.1146/annurev-arplant-043014-115555. (PMID: 10.1146/annurev-arplant-043014-11555525534513)
Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036. https://doi.org/10.1126/science.1141753. (PMID: 10.1126/science.114175317446351)
Teotia S, Tang G (2015) To bloom or not to bloom: role of microRNAs in plant flowering. Mol Plant 8:359–377. https://doi.org/10.1016/j.molp.2014.12.018. (PMID: 10.1016/j.molp.2014.12.01825737467)
Townsley BT, Covington MF, Ichihashi Y, Zumstein K, Sinha NR (2015) BrAD-seq: Breath Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction. Front Plant Sci 6:366. https://doi.org/10.3389/fpls.2015.00366. (PMID: 10.3389/fpls.2015.00366260523364441129)
Tsuji H, Taoka K, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14:45–52. https://doi.org/10.1016/j.pbi.2010.08.016. (PMID: 10.1016/j.pbi.2010.08.01620864385)
Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594. https://doi.org/10.1146/annurev.arplant.59.032607.092755. (PMID: 10.1146/annurev.arplant.59.032607.09275518444908)
Utsumi Y, Utsumi C, Tanaka M, Ha VT, Matsui A, Takahashi S, Seki M (2017) Formation of friable embryogenic callus in cassava is enhanced under conditions of reduced nitrate, potassium and phosphate. PLoS ONE 12:e0180736. https://doi.org/10.1371/journal.pone.0180736. (PMID: 10.1371/journal.pone.0180736288067275555663)
Valverde F (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006. https://doi.org/10.1126/science.1091761. (PMID: 10.1126/science.109176114963328)
Whittaker C, Dean C (2017) The FLC locus: a platform for discoveries in epigenetics and Adaptation. Annu Rev Cell Dev Biol 33:555–575. https://doi.org/10.1146/annurev-cellbio-100616-060546. (PMID: 10.1146/annurev-cellbio-100616-06054628693387)
Wang W, Hostettler CE, Damberger FF, Kossmann J, Lloyd JR, Zeeman SC (2018) Modification of cassava root starch phosphorylation enhances starch functional properties. Front Plant Sci 9:1562. (PMID: 10.3389/fpls.2018.01562)
Yeoh SH et al (2017) Unravelling proximate cues of mass flowering in the tropical forests of South-East Asia from gene expression analyses. Mol Ecol 26:5074–5085. https://doi.org/10.1111/mec.14257. (PMID: 10.1111/mec.1425728749031)
فهرسة مساهمة: Keywords: Cassava; Field transcriptome; Flowering; Manihot esculenta; MeFT1
المشرفين على المادة: 0 (Plant Proteins)
تواريخ الأحداث: Date Created: 20200909 Date Completed: 20220606 Latest Revision: 20220606
رمز التحديث: 20231215
DOI: 10.1007/s11103-020-01057-0
PMID: 32902791
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-5028
DOI:10.1007/s11103-020-01057-0