دورية أكاديمية

Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) with OT-82 induces DNA damage, cell death, and suppression of tumor growth in preclinical models of Ewing sarcoma.

التفاصيل البيبلوغرافية
العنوان: Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) with OT-82 induces DNA damage, cell death, and suppression of tumor growth in preclinical models of Ewing sarcoma.
المؤلفون: Gibson AE; Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., Yeung C; Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., Issaq SH; Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.; Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., Collins VJ; Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., Gouzoulis M; Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., Zhang Y; National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., Ji J; National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., Mendoza A; Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., Heske CM; Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. Christine.heske@nih.gov.
المصدر: Oncogenesis [Oncogenesis] 2020 Sep 10; Vol. 9 (9), pp. 80. Date of Electronic Publication: 2020 Sep 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101580004 Publication Model: Electronic Cited Medium: Print ISSN: 2157-9024 (Print) Linking ISSN: 21579024 NLM ISO Abbreviation: Oncogenesis Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group
مستخلص: NAMPT mediates the rate-limiting step of the NAD salvage pathway, which maintains cellular bioenergetics and provides a necessary substrate for functions essential to rapidly proliferating cancer cells. In this study, we evaluated the efficacy and mechanisms of action of OT-82, a novel, high-potency NAMPT inhibitor with a favorable toxicity profile, in preclinical models of Ewing sarcoma (EWS), an aggressive pediatric malignancy with previously reported selective sensitivity to NAMPT inhibition. We show that OT-82 decreased NAD concentration and impaired proliferation of EWS cells in a dose-dependent manner, with IC 50 values in the single-digit nanomolar range. Notably, genetic depletion of NAMPT phenocopied pharmacological inhibition. On-target activity of OT-82 was confirmed with the addition of NMN, the product of NAMPT, which rescued NAD concentration and EWS cellular viability. Mechanistically, OT-82 treatment resulted in impaired DNA damage repair through loss of PARP activity, G2 cell-cycle arrest, and apoptosis in EWS cells. Additional consequences of OT-82 treatment included reduction of glycolytic and mitochondrial activity. In vivo, OT-82 impaired tumor growth and prolonged survival in mice bearing EWS xenografts. Importantly, antitumor effect correlated with pharmacodynamic markers of target engagement. Furthermore, combining low-dose OT-82 with low doses of agents augmenting DNA damage demonstrated enhanced antitumor activity in vitro and in vivo. Thus, OT-82 treatment represents a potential novel targeted approach for the clinical treatment of EWS.
References: Chiarugi, A., Dolle, C., Felici, R. & Ziegler, M. The NAD metabolome-a key determinant of cancer cell biology. Nat. Rev. Cancer 12, 741–752 (2012). (PMID: 23018234)
Roulston, A. & Shore, G. C. New strategies to maximize therapeutic opportunities for NAMPT inhibitors in oncology. Mol. Cell Oncol. 3, e1052180 (2016). (PMID: 27308565)
Sampath, D., Zabka, T. S., Misner, D. L., O’Brien, T. & Dragovich, P. S. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacol. Ther. 151, 16–31 (2015). (PMID: 25709099)
Chen, H., Wang, S., Zhang, H., Nice, E. C. & Huang, C. Nicotinamide phosphoribosyltransferase (Nampt) in carcinogenesis: new clinical opportunities. Expert Rev. Anticancer Ther. 16, 827–838 (2016). (PMID: 27186719)
Dalamaga, M., Christodoulatos, G. S. & Mantzoros, C. S. The role of extracellular and intracellular nicotinamide phosphoribosyl-transferase in cancer: diagnostic and therapeutic perspectives and challenges. Metabolism. 82, 72–87, https://doi.org/10.1016/j.metabol.2018.01.001 (2018). (PMID: 10.1016/j.metabol.2018.01.00129330025)
Hasmann, M. & Schemainda, I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 63, 7436–7442 (2003). (PMID: 14612543)
Zerp, S. F., Vens, C., Floot, B., Verheij, M. & van Triest, B. NAD(+) depletion by APO866 in combination with radiation in a prostate cancer model, results from an in vitro and in vivo study. Radiother. Oncol. 110, 348–354 (2014). (PMID: 24412016)
Cea, M. et al. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood 120, 3519–3529 (2012). (PMID: 229559173482862)
Heske, C. M. Beyond energy metabolism: exploiting the additional roles of NAMPT for cancer therapy. Front. Oncol. 9, 1514 (2019). (PMID: 32010616)
Xiao, Y. et al. Dependence of tumor cell lines and patient-derived tumors on the NAD salvage pathway renders them sensitive to NAMPT inhibition with GNE-618. Neoplasia 15, 1151–1160 (2013). (PMID: 242041943819631)
Hinsch, N., Frank, M., Doring, C., Vorlander, C. & Hansmann, M. L. QPRT: a potential marker for follicular thyroid carcinoma including minimal invasive variant; a gene expression, RNA and immunohistochemical study. BMC Cancer 9, 93 (2009). (PMID: 193210142667537)
Haslinger, D. et al. Loss of the Chr16p11.2 ASD candidate gene QPRT leads to aberrant neuronal differentiation in the SH-SY5Y neuronal cell model. Mol. Autism 9, 56 (2018). (PMID: 304433116220561)
Duarte-Pereira, S. et al. Extensive regulation of nicotinate phosphoribosyltransferase (NAPRT) expression in human tissues and tumors. Oncotarget 7, 1973–1983 (2016). (PMID: 26675378)
Duarte-Pereira, S. et al. NAMPT and NAPRT1: novel polymorphisms and distribution of variants between normal tissues and tumor samples. Sci. Rep. 4, 6311 (2014). (PMID: 252011604158320)
Chowdhry, S. et al. NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature 569, 570–575, https://doi.org/10.1038/s41586-019-1150-2 (2019). (PMID: 10.1038/s41586-019-1150-2310192977138021)
Shackelford, R. E., Mayhall, K., Maxwell, N. M., Kandil, E. & Coppola, D. Nicotinamide phosphoribosyltransferase in malignancy: a review. Genes Cancer 4, 447–456 (2013). (PMID: 243865063877665)
Garten, A. et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 11, 535–546 (2015). (PMID: 26215259)
Takao, S. et al. Targeting the vulnerability to NAD(+) depletion in B-cell acute lymphoblastic leukemia. Leukemia 32, 616–625 (2018). (PMID: 28904384)
Keshari, K. R. et al. Metabolic response of prostate cancer to nicotinamide phophoribosyltransferase inhibition in a hyperpolarized MR/PET compatible bioreactor. Prostate 75, 1601–1609 (2015). (PMID: 261776084537380)
Cole, J. et al. Novel NAPRT specific antibody identifies small cell lung cancer and neuronal cancers as promising clinical indications for a NAMPT inhibitor/niacin co-administration strategy. Oncotarget 8, 77846–77859 (2017). (PMID: 291004305652819)
Espindola-Netto, J. M. et al. Preclinical efficacy of the novel competitive NAMPT inhibitor STF-118804 in pancreatic cancer. Oncotarget 8, 85054–85067 (2017). (PMID: 291567035689593)
Xu, R. et al. Inhibition of NAMPT decreases cell growth and enhances susceptibility to oxidative stress. Oncol. Rep. 38, 1767–1773 (2017). (PMID: 28714034)
Touat, M. et al. DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade. J. Clin. Invest. 128, 1671–1687 (2018). (PMID: 294471315873862)
Montecucco, F. et al. Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors as therapeutics: rationales, controversies, clinical experience. Curr. Drug Targets 14, 637–643 (2013). (PMID: 23531116)
Hovstadius, P. et al. A Phase I study of CHS 828 in patients with solid tumor malignancy. Clin. Cancer Res. 8, 2843–2850 (2002). (PMID: 12231525)
Ravaud, A. et al. Phase I study and pharmacokinetic of CHS-828, a guanidino-containing compound, administered orally as a single dose every 3 weeks in solid tumours: an ECSG/EORTC study. Eur. J. Cancer 41, 702–707 (2005). (PMID: 15763645)
Pishvaian, M. J. et al. A phase I trial of GMX1777, an inhibitor of nicotinamide phosphoribosyl transferase (NAMPRT), given as a 24-hour infusion. J. Clin. Oncol. 27, 3581–3581 (2009).
von Heideman, A., Berglund, A., Larsson, R. & Nygren, P. Safety and efficacy of NAD depleting cancer drugs: results of a phase I clinical trial of CHS 828 and overview of published data. Cancer Chemother. Pharmacol. 65, 1165–1172 (2010).
Holen, K., Saltz, L. B., Hollywood, E., Burk, K. & Hanauske, A. R. The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Invest. N. Drugs 26, 45–51 (2008).
Goldinger, S. M. et al. Efficacy and safety of APO866 in patients with refractory or relapsed cutaneous T-cell lymphoma: a phase 2 clinical trial. JAMA Dermatol. 152, 837–839 (2016). (PMID: 27007550)
Zabka, T. S. et al. Retinal toxicity, in vivo and in vitro, associated with inhibition of nicotinamide phosphoribosyltransferase. Toxicol. Sci. 144, 163–172 (2015). (PMID: 25505128)
Misner, D. L. et al. Cardiotoxicity associated with nicotinamide phosphoribosyltransferase inhibitors in rodents and in rat and human-derived cells lines. Cardiovasc. Toxicol. 17, 307–318 (2017). (PMID: 27783203)
Zhang, S. L. et al. Crystal structure-based comparison of two NAMPT inhibitors. Acta Pharm. Sin. 39, 294–301 (2018).
Korotchkina, L. et al. OT-82, a novel anticancer drug candidate that targets the strong dependence of hematological malignancies on NAD biosynthesis. Leukemia. 34, 1828–1839, https://doi.org/10.1038/s41375-019-0692-5 (2020). (PMID: 10.1038/s41375-019-0692-5318967817326709)
Gorthi, A. et al. EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 555, 387–391 (2018). (PMID: 2951365229513652)
Stewart, E. et al. Targeting the DNA repair pathway in Ewing sarcoma. Cell Rep. 9, 829–841 (2014). (PMID: 254375394386669)
Tanner, J. M. et al. EWS/FLI is a master regulator of metabolic reprogramming in Ewing sarcoma. Mol. Cancer Res 15, 1517–1530 (2017). (PMID: 287205885668171)
Sen, N. et al. EWS-FLI1 reprograms the metabolism of Ewing sarcoma cells via positive regulation of glutamine import and serine-glycine biosynthesis. Mol. Carcinog. 57, 1342–1357 (2018). (PMID: 298734166175245)
Svoboda, L. K. et al. Menin regulates the serine biosynthetic pathway in Ewing sarcoma. J. Pathol. 245, 324–336 (2018). (PMID: 296728646388767)
Mutz, C. N. et al. EWS-FLI1 confers exquisite sensitivity to NAMPT inhibition in Ewing sarcoma cells. Oncotarget. 8, 24679–24693, https://doi.org/10.18632/oncotarget.14976 (2017). (PMID: 10.18632/oncotarget.14976281605675421879)
Heske, C. M. et al. Matrix screen identifies synergistic combination of PARP inhibitors and nicotinamide phosphoribosyltransferase (NAMPT) inhibitors in Ewing sarcoma. Clin. Cancer Res. 23, 7301–7311, https://doi.org/10.1158/1078-0432.CCR-17-1121 (2017). (PMID: 10.1158/1078-0432.CCR-17-1121288999716636827)
Ying, W. NAD+ and NADH in cellular functions and cell death. Front. Biosci. 11, 3129–3148 (2006). (PMID: 16720381)
Kim, M. Y., Zhang, T. & Kraus, W. L. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 19, 1951–1967 (2005).
Yeung, C. et al. Targeting glycolysis through inhibition of lactate dehydrogenase impairs tumor growth in preclinical models of Ewing sarcoma. Cancer Res. 79, 5060–5073 (2019). (PMID: 314314596774872)
Gehrke, I. et al. On-target effect of FK866, a nicotinamide phosphoribosyl transferase inhibitor, by apoptosis-mediated death in chronic lymphocytic leukemia cells. Clin. Cancer Res. 20, 4861–4872 (2014). (PMID: 25172933)
Hong, S. M. et al. NAMPT suppresses glucose deprivation-induced oxidative stress by increasing NADPH levels in breast cancer. Oncogene 35, 3544–3554 (2016). (PMID: 26568303)
Feng, J. et al. Inhibitor of nicotinamide phosphoribosyltransferase sensitizes glioblastoma cells to temozolomide via activating ROS/JNK signaling pathway. Biomed. Res. Int. 2016, 1450843 (2016). (PMID: 280971265206411)
Hong, S. M. et al. Increased nicotinamide adenine dinucleotide pool promotes colon cancer progression by suppressing reactive oxygen species level. Cancer Sci. 110, 629–638 (2019). (PMID: 30457689)
Cerna, D. et al. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) activity by small molecule GMX1778 regulates reactive oxygen species (ROS)-mediated cytotoxicity in a p53- and nicotinic acid phosphoribosyltransferase1 (NAPRT1)-dependent manner. J. Biol. Chem. 287, 22408–22417 (2012). (PMID: 225704713381200)
Cloux, A. J. et al. Reactive oxygen/nitrogen species contribute substantially to the antileukemia effect of APO866, a NAD lowering agent. Oncotarget 10, 6723–6738 (2019). (PMID: 318033656877101)
Lane, A. N., Higashi, R. M. & Fan, T. W. Metabolic reprogramming in tumors: contributions of the tumor microenvironment. Genes Dis. 7, 185–198 (2020). (PMID: 32215288)
Gaspar, N. et al. Ewing sarcoma: current management and future approaches through collaboration. J. Clin. Oncol. 33, 3036–3046 (2015). (PMID: 26304893)
Patel, A. G. et al. Enhanced killing of cancer cells by poly(ADP-ribose) polymerase inhibitors and topoisomerase I inhibitors reflects poisoning of both enzymes. J. Biol. Chem. 287, 4198–4210 (2012). (PMID: 22158865)
Das, S. K. et al. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res. 44, 8363–8375 (2016). (PMID: 274663875041477)
Furman, W. L. et al. Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J. Clin. Oncol. 17, 1815–1824 (1999). (PMID: 10561220)
Sun, K. et al. A comparative pharmacokinetic study of PARP inhibitors demonstrates favorable properties for niraparib efficacy in preclinical tumor models. Oncotarget 9, 37080–37096 (2018). (PMID: 306478466324689)
Sandhu, S. K. et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 14, 882–892 (2013). (PMID: 23810788)
Somers, K. et al. Effective targeting of NAMPT in patient-derived xenograft models of high-risk pediatric acute lymphoblastic leukemia. Leukemia 34, 1524–1539, https://doi.org/10.1038/s41375-019-0683-6 (2020). (PMID: 10.1038/s41375-019-0683-631848452)
Cerrato, A., Morra, F. & Celetti, A. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. J. Exp. Clin. Cancer Res. 35, 179 (2016). (PMID: 278841985123312)
Slade, D. PARP and PARG inhibitors in cancer treatment. Genes Dev. 34, 360–394, https://doi.org/10.1101/gad.334516.119 (2020). (PMID: 10.1101/gad.334516.119320294557050487)
Ban, J. et al. Suppression of deacetylase SIRT1 mediates tumor-suppressive NOTCH response and offers a novel treatment option in metastatic Ewing sarcoma. Cancer Res. 74, 6578–6588 (2014). (PMID: 25281719)
Marx, C. et al. The sirtuin 1/2 inhibitor tenovin-1 induces a nonlinear apoptosis-inducing factor-dependent cell death in a p53 null Ewing’s sarcoma cell line. Invest. N. Drugs 36, 396–406 (2018).
Zhang, L. Y. et al. Anti-proliferation effect of APO866 on C6 glioblastoma cells by inhibiting nicotinamide phosphoribosyltransferase. Eur. J. Pharm. 674, 163–170 (2012).
Kummar, S. et al. Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J. Clin. Oncol. 27, 2705–2711 (2009). (PMID: 193649672739635)
Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018). (PMID: 2911530429115304)
Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 6, 583–592 (2006). (PMID: 16862189)
Mohammad, R. M. et al. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol. 35(Suppl), S78–S103 (2015). (PMID: 259368184720504)
Kinders, R. J. et al. Preclinical modeling of a phase 0 clinical trial: qualification of a pharmacodynamic assay of poly (ADP-ribose) polymerase in tumor biopsies of mouse xenografts. Clin. Cancer Res. 14, 6877–6885 (2008). (PMID: 189809822766769)
Ji, J. et al. Modeling pharmacodynamic response to the poly(ADP-Ribose) polymerase inhibitor ABT-888 in human peripheral blood mononuclear cells. PLoS ONE 6, e26152 (2011). (PMID: 220288223189959)
Issaq, S. H., Teicher, B. A. & Monks, A. Bioenergetic properties of human sarcoma cells help define sensitivity to metabolic inhibitors. Cell Cycle 13, 1152–1161 (2014). (PMID: 245531194013165)
Hill, B. G. et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol. Chem. 393, 1485–1512 (2012). (PMID: 230928193594552)
Heske, C. M. et al. STA-8666, a novel HSP90 inhibitor/SN-38 drug conjugate, causes complete tumor regression in preclinical mouse models of pediatric sarcoma. Oncotarget 7, 65540–65552 (2016). (PMID: 276088465323173)
تواريخ الأحداث: Date Created: 20200910 Latest Revision: 20210910
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7481307
DOI: 10.1038/s41389-020-00264-0
PMID: 32908120
قاعدة البيانات: MEDLINE
الوصف
تدمد:2157-9024
DOI:10.1038/s41389-020-00264-0