دورية أكاديمية

Dynamic Contrast-Enhanced Magnetic Resonance Imaging as Imaging Biomarker for Vascular Normalization Effect of Infigratinib in High-FGFR-Expressing Hepatocellular Carcinoma Xenografts.

التفاصيل البيبلوغرافية
العنوان: Dynamic Contrast-Enhanced Magnetic Resonance Imaging as Imaging Biomarker for Vascular Normalization Effect of Infigratinib in High-FGFR-Expressing Hepatocellular Carcinoma Xenografts.
المؤلفون: Tran A; Department of Oncologic Imaging, National Cancer Centre, Singapore, Singapore., Koh TS; Department of Oncologic Imaging, National Cancer Centre, Singapore, Singapore., Prawira A; Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore., Ho RZW; Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore., Le TBU; Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore., Vu TC; Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore., Hartano S; Department of Oncologic Imaging, National Cancer Centre, Singapore, Singapore., Teo XQ; Functional Metabolism Group, Agency for Science, Technology and Research, Singapore BioImaging Consortium, Singapore, Singapore., Chen WC; Bruker Singapore Pte Ltd, Singapore, Singapore., Lee P; Functional Metabolism Group, Agency for Science, Technology and Research, Singapore BioImaging Consortium, Singapore, Singapore., Thng CH; Department of Oncologic Imaging, National Cancer Centre, Singapore, Singapore. thng.choon.hua@singhealth.com.sg., Huynh H; Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore. cmrhth@nccs.com.sg.
المصدر: Molecular imaging and biology [Mol Imaging Biol] 2021 Feb; Vol. 23 (1), pp. 70-83. Date of Electronic Publication: 2020 Sep 09.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101125610 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1860-2002 (Electronic) Linking ISSN: 15361632 NLM ISO Abbreviation: Mol Imaging Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : New York, NY : Springer
Original Publication: New York, NY : Elsevier Science, c2001-
مواضيع طبية MeSH: Magnetic Resonance Imaging*, Biomarkers, Tumor/*metabolism , Carcinoma, Hepatocellular/*drug therapy , Contrast Media/*chemistry , Liver Neoplasms/*drug therapy , Neovascularization, Pathologic/*drug therapy , Phenylurea Compounds/*therapeutic use , Pyrimidines/*therapeutic use , Receptors, Fibroblast Growth Factor/*metabolism, Animals ; Antineoplastic Agents/pharmacology ; Antineoplastic Agents/therapeutic use ; Apoptosis/drug effects ; Carcinoma, Hepatocellular/blood supply ; Cell Proliferation/drug effects ; Humans ; Kinetics ; Liver Neoplasms/blood supply ; Mice, SCID ; Perfusion ; Sorafenib/pharmacology ; Sorafenib/therapeutic use ; Tumor Microenvironment/drug effects ; Xenograft Model Antitumor Assays ; Mice
مستخلص: Purpose: Overexpression of fibroblast growth factor receptor (FGFR) contributes to tumorigenesis, metastasis, and poor prognosis of hepatocellular carcinoma (HCC). Infigratinib-a pan-FGFR inhibitor-potently suppresses the growth of high-FGFR-expressing HCCs in part via alteration of the tumor microenvironment and vessel normalization. In this study, we aim to assess the utility of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) as a non-invasive imaging technique to detect microenvironment changes associated with infigratinib and sorafenib treatment in high-FGFR-expressing HCC xenografts.
Procedures: Serial DCE-MRIs were performed on 12 nude mice bearing high-FGFR-expressing patient-derived HCC xenografts to quantify tumor microenvironment pre- (day 0) and post-treatment (days 3, 6, 9, and 15) of vehicle, sorafenib, and infigratinib. DCE-MRI data were analyzed using extended generalized kinetic model and two-compartment distributed parameter model. After treatment, immunohistochemistry stains were performed on the harvested tumors to confirm DCE-MRI findings.
Results: By treatment day 15, infigratinib induced tumor regression (70 % volume reduction from baseline) while sorafenib induced relative growth arrest (185 % volume increase from baseline versus 694 % volume increase from baseline of control). DCE-MRI analysis revealed different changes in microcirculatory parameters upon exposure to sorafenib versus infigratinib. While sorafenib induced microenvironment changes similar to those of rapidly growing tumors, such as a decrease in blood flow (F), fractional intravascular volume (v p ), and permeability surface area product (PS), infigratinib induced the exact opposite changes as early as day 3 after treatment: increase in F, v p , and PS.
Conclusions: Our study demonstrated that DCE-MRI is a reliable non-invasive imaging technique to monitor tumor microcirculatory response to FGFR inhibition and VEGF inhibition in high-FGFR-expressing HCC xenografts. Furthermore, the microcirculatory changes from FGFR inhibition manifested early upon treatment initiation and were reliably detected by DCE-MRI, creating possibilities of combinatorial therapy for synergistic effect.
References: Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492. (PMID: 10.3322/caac.214923020759330207593)
Cheng A-L, Kang Y-K, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Voliotis D, Guan Z (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10:25–34. https://doi.org/10.1016/S1470-2045(08)70285-7. (PMID: 10.1016/S1470-2045(08)70285-71909549719095497)
Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J, SHARP Investigators Study Group (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390. https://doi.org/10.1056/NEJMoa0708857. (PMID: 10.1056/NEJMoa070885718650514)
Méndez-Blanco C, Fondevila F, García-Palomo A, González-Gallego J, Mauriz JL (2018) Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp Mol Med 50:134–139. https://doi.org/10.1038/s12276-018-0159-1. (PMID: 10.1038/s12276-018-0159-16185986)
El-Khoueiry AB, Sangro B, Yau T et al (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389:2492–2502. https://doi.org/10.1016/S0140-6736(17)31046-2. (PMID: 10.1016/S0140-6736(17)31046-2284346487539326)
Moscatelli D, Joseph-Silverstein J, Presta M, Rifkin DB (1988) Multiple forms of an angiogenesis factor: basic fibroblast growth factor. Biochimie 70:83–87. https://doi.org/10.1016/0300-9084(88)90162-9. (PMID: 10.1016/0300-9084(88)90162-92840975)
Kano MR (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFR signaling. J Cell Sci 118:3759–3768. https://doi.org/10.1242/jcs.02483. (PMID: 10.1242/jcs.0248316105884)
Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603. https://doi.org/10.1038/nrc2442. (PMID: 10.1038/nrc24421865083518650835)
Harimoto N, Taguchi K, Shirabe K, Adachi E, Sakaguchi Y, Toh Y, Okamura T, Kayashima H, Taketomi A, Maehara Y (2010) The significance of fibroblast growth factor receptor 2 expression in differentiation of hepatocellular carcinoma. Oncology 78:361–368. https://doi.org/10.1159/000320463. (PMID: 10.1159/00032046320798558)
Paur J, Nika L, Maier C, Moscu-Gregor A, Kostka J, Huber D, Mohr T, Heffeter P, Schrottmaier WC, Kappel S, Kandioler D, Holzmann K, Marian B, Berger W, Grusch M, Grasl-Kraupp B (2015) Fibroblast growth factor receptor 3 isoforms: novel therapeutic targets for hepatocellular carcinoma? Hepatology 62:1767–1778. https://doi.org/10.1002/hep.28023. (PMID: 10.1002/hep.2802326235436)
Huynh H, Lee LY, Goh KY, Ong R, Hao HX, Huang A, Wang Y, Graus Porta D, Chow P, Chung A (2019) Infigratinib mediates vascular normalization, impairs metastasis, and improves chemotherapy in hepatocellular carcinoma. Hepatology 69:943–958. https://doi.org/10.1002/hep.30481. (PMID: 10.1002/hep.30481305759856635738)
Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. https://doi.org/10.1126/science.1104819. (PMID: 10.1126/science.11048191563726215637262)
Zheng N, Wei W, Wang Z (2016) Emerging roles of FGF signaling in hepatocellular carcinoma. Transl Cancer Res 5:1–6. (PMID: 10.21037/tcr.2016.05.13)
Nielsen T, Wittenborn T, Horsman M (2012) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in preclinical studies of antivascular treatments. Pharmaceutics 4:563–589. https://doi.org/10.3390/pharmaceutics4040563. (PMID: 10.3390/pharmaceutics4040563243003713834929)
Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16:430–450. https://doi.org/10.1002/jmri.10181. (PMID: 10.1002/jmri.101811235325812353258)
Koh TS, Bisdas S, Koh D-M, Thng CH (2011) Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI. J Magn Reson Imaging 34:1262–1276. https://doi.org/10.1002/jmri.22795. (PMID: 10.1002/jmri.2279521972053)
Huynh H, Soo KC, Chow PKH et al (2006) Xenografts of human hepatocellular carcinoma: a useful model for testing drugs. Clin Cancer Res 12:4306–4314. https://doi.org/10.1158/1078-0432.CCR-05-2568. (PMID: 10.1158/1078-0432.CCR-05-256816857806)
Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Toh HC, Thng CH, Chow P, Ong HS, Chung A, Goh BC, Smith PD, Soo KC (2010) AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). J Hepatol 52:79–87. https://doi.org/10.1016/j.jhep.2009.10.008. (PMID: 10.1016/j.jhep.2009.10.00819910069)
Wang HZ, Riederer SJ, Lee JN (1987) Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 5:399–416. https://doi.org/10.1002/mrm.1910050502. (PMID: 10.1002/mrm.19100505023431401)
Zhang JL, Koh TS (2006) On the selection of optimal flip angles for T1 mapping of breast tumors with dynamic contrast-enhanced magnetic resonance imaging. IEEE Trans Biomed Eng 53:1209–1214. https://doi.org/10.1109/TBME.2006.873391. (PMID: 10.1109/TBME.2006.87339116761851)
Jiřík R, Taxt T, Macíček O, Bartoš M, Kratochvíla J, Souček K, Dražanová E, Krátká L, Hampl A, Starčuk Z Jr (2019) Blind deconvolution estimation of an arterial input function for small animal DCE-MRI. Magn Reson Imaging 62:46–56. https://doi.org/10.1016/j.mri.2019.05.024. (PMID: 10.1016/j.mri.2019.05.02431150814)
Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HBW, Lee TY, Mayr NA, Parker GJM, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232. https://doi.org/10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s. (PMID: 10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s10508281)
R Core Team (2019) R: a language and environment for statistical computing.
Wickham H, Averick M, Bryan J et al (2019) Welcome to the Tidyverse. JOSS 4:1686. https://doi.org/10.21105/joss.01686. (PMID: 10.21105/joss.01686)
Gavine PR, Mooney L, Kilgour E, Thomas AP, al-Kadhimi K, Beck S, Rooney C, Coleman T, Baker D, Mellor MJ, Brooks AN, Klinowska T (2012) AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res 72:2045–2056. https://doi.org/10.1158/0008-5472.CAN-11-3034. (PMID: 10.1158/0008-5472.CAN-11-303422369928)
Gozgit JM, Wong MJ, Moran L, Wardwell S, Mohemmad QK, Narasimhan NI, Shakespeare WC, Wang F, Clackson T, Rivera VM (2012) Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther 11:690–699. https://doi.org/10.1158/1535-7163.MCT-11-0450. (PMID: 10.1158/1535-7163.MCT-11-045022238366)
Zhao G, Li W-Y, Chen D, Henry JR, Li HY, Chen Z, Zia-Ebrahimi M, Bloem L, Zhai Y, Huss K, Peng SB, McCann DJ (2011) A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol Cancer Ther 10:2200–2210. https://doi.org/10.1158/1535-7163.MCT-11-0306. (PMID: 10.1158/1535-7163.MCT-11-030621900693)
Guagnano V, Kauffmann A, Wöhrle S et al (2012) FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov 2:1118–1133. https://doi.org/10.1158/2159-8290.CD-12-0210. (PMID: 10.1158/2159-8290.CD-12-021023002168)
Guagnano V, Furet P, Spanka C et al (2011) Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem 54:7066–7083. https://doi.org/10.1021/jm2006222. (PMID: 10.1021/jm200622221936542)
Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, Huber J, Nakatani T, Tsujinoue H, Yanase K, Imazu H, Fukui H (2002) Synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in murine hepatocellular carcinoma. Hepatology 35:834–842. https://doi.org/10.1053/jhep.2002.32541. (PMID: 10.1053/jhep.2002.3254111915029)
Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309. https://doi.org/10.1016/j.ccr.2005.09.005. (PMID: 10.1016/j.ccr.2005.09.00516226705)
Lee CG, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, Park KR, Ferrara N, Jain RK, Suit HD, Boucher Y (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60:5565–5570. (PMID: 11034104)
Jain RK (2002) Tumor angiogenesis and accessibility: role of vascular endothelial growth factor. Semin Oncol 29:3–9. https://doi.org/10.1053/sonc.2002.37265. (PMID: 10.1053/sonc.2002.3726512516032)
Jain RK (2005) Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park) 19:7–16.
Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–354. https://doi.org/10.1038/nature12626. (PMID: 10.1038/nature1262624048067)
Liu LP, Ho RLK, Chen GG, Lai PBS (2012) Sorafenib inhibits hypoxia-inducible factor-1 synthesis: implications for antiangiogenic activity in hepatocellular carcinoma. Clin Cancer Res 18:5662–5671. https://doi.org/10.1158/1078-0432.CCR-12-0552. (PMID: 10.1158/1078-0432.CCR-12-055222929805)
Gauthier A, Ho M (2013) Role of sorafenib in the treatment of advanced hepatocellular carcinoma: an update. Hepatol Res 43:147–154. https://doi.org/10.1111/j.1872-034X.2012.01113.x. (PMID: 10.1111/j.1872-034X.2012.01113.x23145926)
Li ZF, Zhao W, Qi TF et al (2018) A simple B 1 correction method for dynamic contrast-enhanced MRI. Phys Med Biol 63:16NT01. https://doi.org/10.1088/1361-6560/aad519. (PMID: 10.1088/1361-6560/aad51930033933)
Boudreau M, Tardif CL, Stikov N, Sled JG, Lee W, Pike GB (2017) B1 mapping for bias-correction in quantitative T1 imaging of the brain at 3T using standard pulse sequences. J Magn Reson Imaging 46:1673–1682. https://doi.org/10.1002/jmri.25692. (PMID: 10.1002/jmri.2569228301086)
فهرسة مساهمة: Keywords: Biomarker; DCE-MRI; FGFR; HCC; Vascular normalization
المشرفين على المادة: 0 (Antineoplastic Agents)
0 (Biomarkers, Tumor)
0 (Contrast Media)
0 (Phenylurea Compounds)
0 (Pyrimidines)
0 (Receptors, Fibroblast Growth Factor)
9ZOQ3TZI87 (Sorafenib)
A4055ME1VK (infigratinib)
تواريخ الأحداث: Date Created: 20200910 Date Completed: 20210825 Latest Revision: 20240226
رمز التحديث: 20240226
DOI: 10.1007/s11307-020-01531-7
PMID: 32909245
قاعدة البيانات: MEDLINE
الوصف
تدمد:1860-2002
DOI:10.1007/s11307-020-01531-7