دورية أكاديمية

Aberrant activation of super enhancer and choline metabolism drive antiandrogen therapy resistance in prostate cancer.

التفاصيل البيبلوغرافية
العنوان: Aberrant activation of super enhancer and choline metabolism drive antiandrogen therapy resistance in prostate cancer.
المؤلفون: Wen S; Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, China.; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA., He Y; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA., Wang L; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA., Zhang J; Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Scottsdale, AZ, USA., Quan C; Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, China. quancy98@163.com., Niu Y; Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, China. niuyuanjie9317@163.com., Huang H; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA. huang.haojie@mayo.edu.; Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA. huang.haojie@mayo.edu.; Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN, USA. huang.haojie@mayo.edu.
المصدر: Oncogene [Oncogene] 2020 Oct; Vol. 39 (42), pp. 6556-6571. Date of Electronic Publication: 2020 Sep 11.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 8711562 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5594 (Electronic) Linking ISSN: 09509232 NLM ISO Abbreviation: Oncogene Subsets: MEDLINE
أسماء مطبوعة: Publication: <2002->: Basingstoke : Nature Publishing Group
Original Publication: Basingstoke, Hampshire, UK : Scientific & Medical Division, MacMillan Press, c1987-
مواضيع طبية MeSH: Androgen Antagonists/*pharmacology , Choline Kinase/*genetics , Diacylglycerol Cholinephosphotransferase/*genetics , Drug Resistance, Neoplasm/*genetics , Phosphatidylcholines/*biosynthesis , Prostatic Neoplasms, Castration-Resistant/*therapy , Receptors, Androgen/*metabolism, Androgen Antagonists/therapeutic use ; Androgens/metabolism ; Animals ; Benzamides ; Cell Cycle Proteins/genetics ; Cell Cycle Proteins/metabolism ; Cell Line, Tumor ; Cell Proliferation ; Chemotherapy, Adjuvant/methods ; Choline Kinase/metabolism ; Chromatin Immunoprecipitation Sequencing ; Diacylglycerol Cholinephosphotransferase/metabolism ; Drug Resistance, Neoplasm/drug effects ; Enhancer Elements, Genetic ; Gene Expression Regulation, Neoplastic/drug effects ; Humans ; Male ; Mice ; Nitriles ; Phenylthiohydantoin/analogs & derivatives ; Phenylthiohydantoin/pharmacology ; Phenylthiohydantoin/therapeutic use ; Prostate/pathology ; Prostatectomy ; Prostatic Neoplasms, Castration-Resistant/genetics ; Prostatic Neoplasms, Castration-Resistant/pathology ; RNA, Long Noncoding/genetics ; Signal Transduction ; Transcription Factors/genetics ; Transcription Factors/metabolism ; Transcription, Genetic ; Xenograft Model Antitumor Assays
مستخلص: Next generation antiandrogens such as enzalutamide (Enz) are effective initially for the treatment of castration-resistant prostate cancer (CRPC). However, the disease often relapses and the underlying mechanisms remain elusive. By performing H3-lysine-27 acetylation (H3K27ac) ChIP-seq in Enz-resistant CRPC cells, we identified a group of super enhancers (SEs) that are abnormally activated in Enz-resistant CRPC cells and associated with enhanced transcription of a subset of tumor promoting genes such as CHPT1, which catalyzes phosphatidylcholine (PtdCho) synthesis and regulates choline metabolism. Increased CHPT1 conferred CRPC resistance to Enz in vitro and in mice. While androgen receptor (AR) primarily binds to a putative CHPT1 enhancer and mediates androgen-dependent expression of CHPT1 gene in Enz-sensitive prostate cancer cells, AR binds to a different enhancer within the CHPT1 SE locus and facilities androgen-independent expression of CHPT1 in Enz-resistant cells. We further identified a long-non coding RNA transcribed at CHPT1 enhancer (also known as enhancer RNA) that binds to the H3K27ac reader BRD4 and participates in regulating CHPT1 SE activity and CHPT1 gene expression. Our findings demonstrate that aberrantly activated SE upregulates CHPT1 expression and confers Enz resistance in CRPC, suggesting that SE-mediated expression of downstream effectors such as CHPT1 can be viable targets to overcome Enz resistance in PCa.
References: Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30. (PMID: 10.3322/caac.2144229313949)
Niu Y, Chang TM, Yeh S, Ma WL, Wang YZ, Chang C. Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene. 2010;29:3593–604. (PMID: 2044027010.1038/onc.2010.121)
Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324:787–90. (PMID: 19359544298150810.1126/science.1168175)
Shore ND, Chowdhury S, Villers A, Klotz L, Siemens DR, Phung D, et al. Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol. 2016;17:153–63. (PMID: 2677450810.1016/S1470-2045(15)00518-5)
Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367:1187–97. (PMID: 10.1056/NEJMoa120750622894553)
Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33. (PMID: 24881730441893110.1056/NEJMoa1405095)
Heidenreich A, Chowdhury S, Klotz L, Siemens DR, Villers A, Ivanescu C, et al. Impact of enzalutamide compared with bicalutamide on quality of life in men with metastatic castration-resistant prostate cancer: additional analyses from the TERRAIN randomised clinical trial. Eur Urol. 2017;71:534–42. (PMID: 2749776210.1016/j.eururo.2016.07.027)
Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 2013;73:483–9. (PMID: 2311788510.1158/0008-5472.CAN-12-3630)
Sharp A, Coleman I, Yuan W, Sprenger C, Dolling D, Rodrigues DN, et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J Clin Invest. 2019;129:192–208. (PMID: 3033481410.1172/JCI122819)
Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38. (PMID: 25184630420150210.1056/NEJMoa1315815)
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19. (PMID: 23582322365312910.1016/j.cell.2013.03.035)
Khan A, Mathelier A, Zhang X. Super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers. Epigenetics. 2018;13:910–22. (PMID: 30169995628478110.1080/15592294.2018.1514231)
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155:934–47. (PMID: 10.1016/j.cell.2013.09.05324119843)
Xie JJ, Jiang YY, Jiang Y, Li CQ, Lim MC, An O. et al. Super-enhancer-driven long non-coding RNA LINC01503, regulated by TP63, is over-expressed and oncogenic in squamous cell carcinoma. Gastroenterology. 2018;154:2137–51. (PMID: 2945479010.1053/j.gastro.2018.02.018)
He Y, Long W, Liu Q. Targeting super-enhancers as a therapeutic strategy for cancer treatment. Front Pharm. 2019;10:361. (PMID: 10.3389/fphar.2019.00361)
Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science. 2018;361:eaar3958. (PMID: 29930091609219310.1126/science.aar3958)
Zuber V, Bettella F, Witoelar A, Consortium P, Cruk G, Consortium B, et al. Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer. BMC Genomics. 2017;18:270. (PMID: 28359301537468010.1186/s12864-017-3620-y)
Di Micco R, Fontanals-Cirera B, Low V, Ntziachristos P, Yuen SK, Lovell CD, et al. Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Rep. 2014;9:234–47. (PMID: 25263550431772810.1016/j.celrep.2014.08.055)
Sengupta S, George RE. Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer. 2017;3:269–81. (PMID: 28718439554601010.1016/j.trecan.2017.03.006)
Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–73. (PMID: 208715963010259)
Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–34. (PMID: 23582323376096710.1016/j.cell.2013.03.036)
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9. (PMID: 1918892210.1038/nrg2521)
Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465:182–7. (PMID: 20393465302007910.1038/nature09033)
Mousavi K, Zare H, Dell’orso S, Grontved L, Gutierrez-Cruz G, Derfoul A, et al. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell. 2013;51:606–17. (PMID: 23993744378635610.1016/j.molcel.2013.07.022)
Katz-Brull R, Margalit R, Degani H. Differential routing of choline in implanted breast cancer and normal organs. Magn Reson Med. 2001;46:31–8. (PMID: 1144370810.1002/mrm.1157)
Rohrschneider LR, Boutwell RK. The early stimulation of phospholipid metabolism by 12-0-tetradecanoyl-phorbol-13-acetate and its specificity for tumor promotion. Cancer Res. 1973;33:1945–52. (PMID: 4720803)
Wertz PW, Mueller GC. Rapid stimulation of phospholipid metabolism in bovine lymphocytes by tumor-promoting phorbol esters. Cancer Res. 1978;38:2900–4. (PMID: 679198)
Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11:835–48. (PMID: 22089420433788310.1038/nrc3162)
Ackerstaff E, Glunde K, Bhujwalla ZM. Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem. 2003;90:525–33. (PMID: 1452398710.1002/jcb.10659)
Glunde K, Jie C, Bhujwalla ZM. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res. 2004;64:4270–6. (PMID: 1520534110.1158/0008-5472.CAN-03-3829)
Ting YL, Sherr D, Degani H. Variations in energy and phospholipid metabolism in normal and cancer human mammary epithelial cells. Anticancer Res. 1996;16:1381–8. (PMID: 8694505)
Jia M, Andreassen T, Jensen L, Bathen TF, Sinha I, Gao H, et al. Estrogen receptor alpha promotes breast cancer by reprogramming choline metabolism. Cancer Res. 2016;76:5634–46. (PMID: 2745752010.1158/0008-5472.CAN-15-2910)
Chatterjee D, Mukherjee S, Das SK. Regulation of cholinephosphotransferase by thyroid hormone. Biochem Biophys Res Commun. 2001;282:861–4. (PMID: 1135262910.1006/bbrc.2001.4662)
Cho WK, Spille JH, Hecht M, Lee C, Li C, Grube V, et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science. 2018;361:412–5. (PMID: 29930094654381510.1126/science.aar4199)
Chandrashekar DS, Bashel B, SAH Balasubramanya, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58. (PMID: 28732212551609110.1016/j.neo.2017.05.002)
Stelloo S, Bergman AM, Zwart W. Androgen receptor enhancer usage and the chromatin regulatory landscape in human prostate cancers. Endocr. Relat. Cancer. 2019;26:R267–85. (PMID: 3086592810.1530/ERC-19-0032)
Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J, et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548:297–303. (PMID: 28783718599533710.1038/nature23306)
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28. (PMID: 26000489448460210.1016/j.cell.2015.05.001)
Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36. (PMID: 3106112910.1073/pnas.19026511166561293)
Cancer Genome Atlas Research N. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25. (PMID: 10.1016/j.cell.2015.10.025)
Kohli M, Wang L, Xie F, Sicotte H, Yin P, Dehm SM, et al. Mutational landscapes of sequential prostate metastases and matched patient derived xenografts during enzalutamide therapy. PLoS ONE. 2015;10:e0145176. (PMID: 26695660468786710.1371/journal.pone.0145176)
Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 2014;74:1272–83. (PMID: 2435642010.1158/0008-5472.CAN-13-2921-T)
Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510:278–82. (PMID: 24759320407596610.1038/nature13229)
Miquel K, Pradines A, Terce F, Selmi S, Favre G. Competitive inhibition of choline phosphotransferase by geranylgeraniol and farnesol inhibits phosphatidylcholine synthesis and induces apoptosis in human lung adenocarcinoma A549 cells. J Biol Chem. 1998;273:26179–86. (PMID: 974830010.1074/jbc.273.40.26179)
Anthony ML, Zhao M, Brindle KM. Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells. J Biol Chem. 1999;274:19686–92. (PMID: 1039190810.1074/jbc.274.28.19686)
Ramos B, El Mouedden M, Claro E, Jackowski S. Inhibition of CTP:phosphocholine cytidylyltransferase by C(2)-ceramide and its relationship to apoptosis. Mol Pharm. 2002;62:1068–75. (PMID: 10.1124/mol.62.5.1068)
Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann Oncol. 2017;28:1776–87. (PMID: 2883821610.1093/annonc/mdx157)
Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, Qi J, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell. 2013;24:777–90. (PMID: 24332044401872210.1016/j.ccr.2013.11.003)
Zanconato F, Battilana G, Forcato M, Filippi L, Azzolin L, Manfrin A, et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat Med. 2018;24:1599–610. (PMID: 30224758618120610.1038/s41591-018-0158-8)
Sen P, Lan Y, Li CY, Sidoli S, Donahue G, Dou Z. et al. Histone acetyltransferase p300 induces de novo super-enhancers to drive cellular senescence. Mol Cell. 2019;73:684–98. (PMID: 30773298668847910.1016/j.molcel.2019.01.021)
Larue RC, Plumb MR, Crowe BL, Shkriabai N, Sharma A, DiFiore J, et al. Bimodal high-affinity association of Brd4 with murine leukemia virus integrase and mononucleosomes. Nucleic Acids Res. 2014;42:4868–81. (PMID: 24520112400566310.1093/nar/gku135)
Kvaratskhelia M, Sharma A, Larue RC, Serrao E, Engelman A. Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res. 2014;42:10209–25. (PMID: 25147212417636710.1093/nar/gku769)
Hajmirza A, Emadali A, Gauthier A, Casasnovas O, Gressin R, Callanan MB BET Family Protein BRD4: An Emerging Actor in NFkappaB Signaling in Inflammation and Cancer. Biomedicines 2018;6.
Donati B, Lorenzini E, Ciarrocchi A. BRD4 and cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17:164. (PMID: 30466442625120510.1186/s12943-018-0915-9)
Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–51. (PMID: 23498934364049410.1016/j.cell.2013.02.014)
Hah N, Benner C, Chong LW, Yu RT, Downes M, Evans RM. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. Proc Natl Acad Sci USA. 2015;112:E297–302. (PMID: 2556466110.1073/pnas.14240281124311831)
Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature. 2011;474:390–4. (PMID: 21572438311702210.1038/nature10006)
Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 2008;322:1845–8. (PMID: 19056941283333310.1126/science.1162228)
Beagrie RA, Pombo A. Gene activation by metazoan enhancers: Diverse mechanisms stimulate distinct steps of transcription. Bioessays. 2016;38:881–93. (PMID: 2745294610.1002/bies.201600032)
Ko JY, Oh S, Yoo KH. Functional enhancers as master regulators of tissue-specific gene regulation and cancer development. Mol Cells. 2017;40:169–77. (PMID: 283591475386954)
Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol. 2007;8:479–90. (PMID: 17473849550717710.1038/nrm2178)
Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 2018;19:327–41. (PMID: 10.1038/nrm.2017.13029339797)
Zhao Y, Wang L, Ren S, Wang L, Blackburn PR, McNulty MS, et al. Activation of P-TEFb by androgen receptor-regulated enhancer RNAs in castration-resistant prostate cancer. Cell Rep. 2016;15:599–610. (PMID: 27068475539519910.1016/j.celrep.2016.03.038)
المشرفين على المادة: 0 (AR protein, human)
0 (Androgen Antagonists)
0 (Androgens)
0 (BRD4 protein, human)
0 (Benzamides)
0 (Cell Cycle Proteins)
0 (Nitriles)
0 (Phosphatidylcholines)
0 (RNA, Long Noncoding)
0 (Receptors, Androgen)
0 (Transcription Factors)
2010-15-3 (Phenylthiohydantoin)
93T0T9GKNU (enzalutamide)
EC 2.7.1.32 (Choline Kinase)
EC 2.7.8.2 (CHPT1 protein, human)
EC 2.7.8.2 (Diacylglycerol Cholinephosphotransferase)
تواريخ الأحداث: Date Created: 20200912 Date Completed: 20201214 Latest Revision: 20220418
رمز التحديث: 20231215
DOI: 10.1038/s41388-020-01456-z
PMID: 32917955
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5594
DOI:10.1038/s41388-020-01456-z