دورية أكاديمية

Ethanol exposure during the brain growth spurt period increases ethanol-induced aggressive behavior in adolescent male mice.

التفاصيل البيبلوغرافية
العنوان: Ethanol exposure during the brain growth spurt period increases ethanol-induced aggressive behavior in adolescent male mice.
المؤلفون: Demarque KC; Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil., Krahe TE; Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil., de Oliveira GM; Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil., Abreu-Villaça Y; Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil., Manhães AC; Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil., Filgueiras CC; Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil., Ribeiro-Carvalho A; Departamento de Ciências, Faculdade de Formação de Professores da, Universidade do Estado do Rio de Janeiro, São Gonçalo, Brazil.
المصدر: International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience [Int J Dev Neurosci] 2020 Nov; Vol. 80 (7), pp. 657-666. Date of Electronic Publication: 2020 Sep 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons, Inc Country of Publication: United States NLM ID: 8401784 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-474X (Electronic) Linking ISSN: 07365748 NLM ISO Abbreviation: Int J Dev Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : Hoboken, NJ : John Wiley & Sons, Inc.
Original Publication: Oxford : New York : Pergamon Press, c1983-
مواضيع طبية MeSH: Aggression/*drug effects , Brain/*drug effects , Ethanol/*pharmacology , Testosterone/*blood, Animals ; Male ; Mice ; Motor Activity/drug effects ; Testis/drug effects
مستخلص: Ethanol exposure during development is associated with deficient social behavior, such as aggressive behavior, and ethanol consumption is associated with violent crimes, thus raising the possibility that individuals with fetal alcohol spectrum disorder may exhibit exacerbated social deficits in response to ethanol exposure. The present study evaluated the effects of ethanol exposure during the brain growth spurt period (i.e., a critical time period during which ethanol's effects are augmented) on aggressive behavior and ethanol-induced aggression during adolescence. From postnatal Day 2 (PD2) to PD8, Swiss mice received either ethanol (5 g/kg, i.p.) or saline on alternate days. On PD39, aggressive behavior was assessed using the resident-intruder paradigm in male mice, and social dominance was investigated using the tube dominance test in both males and females. Testis structure and testosterone levels were evaluated in male mice. Early ethanol exposure increased the gonadosomatic index and the number of Leydig cells. The thickness of the seminiferous tube decreased. No difference in testosterone levels was found. The ethanol-exposed resident mice exhibited increased number and duration of aggressive episodes only when challenged with a low ethanol dose (1 g/kg) before confrontation. Female mice early-exposed to ethanol won more confrontations in the tube dominance test. The present findings suggest a critical brain growth spurt period that is susceptible to ethanol-induced alterations of social dominance behavior in females. Although basal levels of aggression were unaffected, early ethanol exposure resulted in greater susceptibility to ethanol-induced aggression in adolescent male mice.
(© 2020 International Society for Developmental Neuroscience.)
References: Abreu-Villaça, Y., Carvalho-Graça, A. C., Skinner, G., Lotufo, B. M., Duarte-Pinheiro, V. H. S., Ribeiro-Carvalho, A., … Filgueiras, C. C. (2018). Hyperactivity and memory/learning deficits evoked by developmental exposure to nicotine and/or ethanol are mitigated by cAMP and cGMP signaling cascades activation. Neurotoxicology, 66, 150-159. https://doi.org/10.1016/j.neuro.2018.04.003.
de Almeida, R., Nikulina, E., Faccidomo, S., Fish, E., & Miczek, K. (2001). Zolmitriptan - a 5-HT 1B/D agonist, alcohol, and aggression in mice. Psychopharmacology (Berl), 157, 131-141. https://doi.org/10.1007/s002130100778.
Anacker, A. M. J., Smith, M. L., & Ryabinin, A. E. (2014). Establishment of stable dominance interactions in prairie vole peers: Relationships with alcohol drinking and activation of the paraventricular nucleus of the hypothalamus. Social Neuroscience, 9, 484-494. https://doi.org/10.1080/17470919.2014.931885.
Baltieri, D. A., & de Andrade, A. G. (2008). Alcohol and drug consumption among sexual offenders. Forensic Science International, 175, 31-35. https://doi.org/10.1016/j.forsciint.2007.05.004.
Bandeira, F., Lent, R., & Herculano-Houzel, S. (2009). Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proceedings of the National Academy of Sciences, 106, 14108-14113. https://doi.org/10.1073/pnas.0804650106.
Charles Lawrence, R., Cale Bonner, H., Newsom, R. J., & Kelly, S. J. (2008). Effects of alcohol exposure during development on play behavior and c-Fos expression in response to play behavior. Behavioral Brain Research, 188, 209-218. https://doi.org/10.1016/j.bbr.2007.10.028.
Cristina-Rodrigues, F., de Oliveira-Pinto, J., Paes-Branco, D., Manhães, A. C., Abreu-Villaça, Y., Krahe, T. E., & Filgueiras, C. C. (2020). Ethanol exposure during the brain growth spurt impairs habituation and promotes locomotor hyperactivity of infant mice in the tail suspension test. Psychology & Neuroscience. https://doi.org/10.1037/pne0000198.
de Almeida, R. M. M., Ferrari, P. F., Parmigiani, S., & Miczek, K. A. (2005). Escalated aggressive behavior: Dopamine, serotonin and GABA. European Journal of Pharmacology, 526, 51-64. https://doi.org/10.1016/j.ejphar.2005.10.004.
Demarque, K. C., Dutra-Tavares, A. C., Nunes-Freitas, A. L., Araújo, U. C., Manhães, A. C., Abreu-Villaça, Y., … Ribeiro-Carvalho, A. (2020). Ethanol exposure during the brain growth spurt affects social behavior and increases susceptibility to acute ethanol effects during adolescence in male mice. International Journal of Developmental Neuroscience, 80(3), 197-207. https://doi.org/10.1002/jdn.10017.
Eichler, A., Grunitz, J., Grimm, J., Walz, L., Raabe, E., Goecke, T. W., … Kornhuber, J. (2016). Did you drink alcohol during pregnancy? Inaccuracy and discontinuity of women’s self-reports: On the way to establish meconium ethyl glucuronide (EtG) as a biomarker for alcohol consumption during pregnancy. Alcohol, 54, 39-44. https://doi.org/10.1016/j.alcohol.2016.07.002.
Ethen, M. K., Ramadhani, T. A., Scheuerle, A. E., Canfield, M. A., Wyszynski, D. F., Druschel, C. M., & Romitti, P. A. (2009). Alcohol consumption by women before and during pregnancy. Maternal and Child Health Journal, 13, 274-285. https://doi.org/10.1007/s10995-008-0328-2.
Faccidomo, S., Bannai, M., & Miczek, K. A. (2008). Escalated aggression after alcohol drinking in male mice: Dorsal Raphé and prefrontal cortex serotonin and 5-HT1B receptors. Neuropsychopharmacology, 33, 2888-2899. https://doi.org/10.1038/npp.2008.7.
Filgueiras, C. C., Krahe, T. E., & Medina, A. E. (2010). Phosphodiesterase type 1 inhibition improves learning in rats exposed to alcohol during the third trimester equivalent of human gestation. Neuroscience Letters, 473, 202-207. https://doi.org/10.1016/j.neulet.2010.02.046.
Freeman, J., Condon, C., Hamilton, S., Mutch, R. C., Bower, C., & Watkins, R. E. (2019). Challenges in accurately assessing prenatal alcohol exposure in a study of fetal alcohol spectrum disorder in a youth detention center. Alcoholism, Clinical and Experimental Research, 43, 309-316. https://doi.org/10.1111/acer.13926.
Hamilton, D. A., Akers, K. G., Rice, J. P., Johnson, T. E., Candelaria-Cook, F. T., Maes, L. I., … Savage, D. D. (2010). Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: Relationship to structural plasticity and immediate early gene expression in frontal cortex. Behavioral Brain Research, 207, 290-304. https://doi.org/10.1016/j.bbr.2009.10.012.
Hamilton, D. A., Barto, D., Rodriguez, C. I., Magcalas, C. M., Fink, B. C., Rice, J. P., … Savage, D. D. (2014). Effects of moderate prenatal ethanol exposure and age on social behavior, spatial response perseveration errors and motor behavior. Behavioral Brain Research, 269, 44-54. https://doi.org/10.1016/j.bbr.2014.04.029.
Heinz, A. J., Beck, A., Meyer-Lindenberg, A., Sterzer, P., & Heinz, A. (2011). Cognitive and neurobiological mechanisms of alcohol-related aggression. Nature Reviews Neuroscience, 12, 400-413. https://doi.org/10.1038/nrn3042.
Lan, N., Vogl, A. W., & Weinberg, J. (2013). Prenatal ethanol exposure delays the onset of spermatogenesis in the rat. Alcoholism, Clinical and Experimental Research, 37, 1074-1081. https://doi.org/10.1111/acer.12079.
Lange, S., Probst, C., Gmel, G., Rehm, J., Burd, L., & Popova, S. (2017). Global prevalence of fetal alcohol spectrum disorder among children and youth: A systematic review and meta-analysis. JAMA Pediatr., 171, 948-956. https://doi.org/10.1001/jamapediatrics.2017.1919.
Lugo, J. N., Marino, M. D., Gass, J. T., Wilson, M. A., & Kelly, S. J. (2006). Ethanol exposure during development reduces resident aggression and testosterone in rats. Physiology & Behavior, 87, 330-337. https://doi.org/10.1016/j.physbeh.2005.10.005.
Marquardt, K., & Brigman, J. L. (2016). The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: Insights from rodent models. Alcohol, 118, 6072-6078. https://doi.org/10.1002/cncr.27633.Percutaneous.
Miczek, K. A., DeBold, J. F., Hwa, L. S., Newman, E. L., & de Almeida, R. M. M. (2015). Alcohol and violence: Neuropeptidergic modulation of monoamine systems. Annals of the New York Academy of Sciences, 1349, 96-118. https://doi.org/10.1111/nyas.12862.
Miczek, K. A., Fish, E. W., De Almeida, R. M. M., Faccidomo, S., & Debold, J. F. (2004). Role of alcohol consumption in escalation to violence. Annals of the New York Academy of Sciences, 1036, 278-289. https://doi.org/10.1196/annals.1330.018.
Miczek, K. A., Maxson, S. C., Fish, E. W., & Faccidomo, S. (2001). Aggressive behavioral phenotypes in mice. Behavioral Brain Research, 125, 167-181. https://doi.org/10.1016/S0166-4328(01)00298-4.
Momino, W., Félix, T. M., Abeche, A. M., Zandoná, D. I., Scheibler, G. G., Chambers, C., … Schüler-Faccini, L. (2012). Maternal drinking behavior and Fetal Alcohol Spectrum disorders in adolescents with criminal behavior in southern Brazil. Genetics and Molecular Biology, 35, 960-965. https://doi.org/10.1590/S1415-47572012000600011.
Mooney, S. M., & Varlinskaya, E. I. (2011). Acute prenatal exposure to ethanol and social behavior: Effects of age, sex, and timing of exposure. Behavioral Brain Research, 216, 358-364. https://doi.org/10.1016/j.bbr.2010.08.014.
Mylchreest, E., Sar, M., Wallace, D. G., & Foster, P. M. D. (2002). Fetal testosterone insufficiency and abnormal proliferation of Leydig cells and gonocytes in rats exposed to di(n-butyl) phthalate. Reproductive Toxicology, 16, 19-28. https://doi.org/10.1016/s0890-6238(01)00201-5.
Narvaes, R., & de Almeida, R. M. M. (2014). Aggressive behavior and three neurotransmitters: Dopamine, GABA, and serotonin-A review of the last 10 years. Psychology & Neuroscience, 7, 601-607. https://doi.org/10.3922/j.psns.2014.4.20.
Niccols, A. (2007). Fetal alcohol syndrome and the developing socio-emotional brain. Brain and Cognition, 65, 135-142. https://doi.org/10.1016/j.bandc.2007.02.009.
Nunes, F., Ferreira-Rosa, K., Pereira, M. D. S., Kubrusly, R. C., Manhães, A. C., Abreu-Villaça, Y., & Filgueiras, C. C. (2011). Acute administration of vinpocetine, a phosphodiesterase type 1 inhibitor, ameliorates hyperactivity in a mice model of fetal alcohol spectrum disorder. Drug and Alcohol Dependence, 119, 81-87. https://doi.org/10.1016/j.drugalcdep.2011.05.024.
Onu, J., Oke, B., Ozegbe, P., & Oyewale, J. (2014). Morphological alteration of seminiferous tubules of testes of Wistar rat offspring exposed to alcohol during pregnancy and/or lactation. International Journal of Biological and Chemical Sciences, 8, 1. https://doi.org/10.4314/ijbcs.v8i1.1.
Quadros, I. M., Hwa, L. S., Shimamoto, A., Carlson, J., DeBold, J. F., & Miczek, K. A. (2014). Prevention of alcohol-heightened aggression by CRF-R1 antagonists in mice: Critical role for DRN-PFC serotonin pathway. Neuropsychopharmacology, 39, 2874-2883. https://doi.org/10.1038/npp.2014.139.
Royalty, J. (1990). Effects of prenatal ethanol exposure on juvenile play-fighting and postpubertal aggression in rats. Psychological Reports, 66, 551-560. https://doi.org/10.2466/pr0.1990.66.2.551.
Şen, E., Tunali, Y., & Erkan, M. (2015). Testicular development of male mice offsprings exposed to acrylamide and alcohol during the gestation and lactation period. Human and Experimental Toxicology, 34, 401-414. https://doi.org/10.1177/0960327114542883.
Spohr, H.-L., Willms, J., & Steinhausen, H.-C. (2007). Fetal alcohol spectrum disorders in young adulthood. Journal of Pediatrics, 150, 175-179.e1. https://doi.org/10.1016/j.jpeds.2006.11.044.
Tran, T. D., Cronise, K., Marino, M. D., Jenkins, W. J., & Kelly, S. J. (2000). Critical periods for the effects of alcohol exposure on brain weight, body weight, activity and investigation. Behavioral Brain Research, 116, 99-110. https://doi.org/10.1016/s0166-4328(00)00263-1.
van Erp, A. M., & Miczek, K. A. (2000). Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. Journal of Neuroscience, 20, 9320-9325. https://doi.org/10.1523/JNEUROSCI.20-24-09320.2000.
Wang, F., Zhu, J., Zhu, H., Zhang, Q., Lin, Z., & Hu, H. (2011). Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science, 334(6056), 693-697. https://doi.org/10.1126/science.1209951.
Wozniak, D. F., Hartman, R. E., Boyle, M. P., Vogt, S. K., Brooks, A. R., Tenkova, T., … Muglia, L. J. (2004). Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiology of Diseases, 17, 403-414. https://doi.org/10.1016/j.nbd.2004.08.006.
Yang, C. R., Bai, Y. Y., Ruan, C. S., Zhou, H. F., Liu, D., Wang, X. F., … Zhou, X. F. (2015). Enhanced aggressive behaviour in a mouse model of depression. Neurotoxicity Research, 27, 129-142. https://doi.org/10.1007/s12640-014-9498-4.
Zhou, T., Zhu, H., Fan, Z., Wang, F., Chen, Y., Liang, H., … Hu, H. (2017). History of winning remodels thalamo-PFC circuit to reinforce social dominance. Science, 357(6347), 162-168. https://doi.org/10.1126/science.aak9726.
معلومات مُعتمدة: E26/202.764/2015 Jovem Cientista do Nosso Estado
فهرسة مساهمة: Keywords: aggression; development; drugs of abuse; resident-intruder paradigm
المشرفين على المادة: 3K9958V90M (Ethanol)
3XMK78S47O (Testosterone)
تواريخ الأحداث: Date Created: 20200913 Date Completed: 20210826 Latest Revision: 20210826
رمز التحديث: 20221213
DOI: 10.1002/jdn.10062
PMID: 32920848
قاعدة البيانات: MEDLINE
الوصف
تدمد:1873-474X
DOI:10.1002/jdn.10062