دورية أكاديمية

BDA-366, a putative Bcl-2 BH4 domain antagonist, induces apoptosis independently of Bcl-2 in a variety of cancer cell models.

التفاصيل البيبلوغرافية
العنوان: BDA-366, a putative Bcl-2 BH4 domain antagonist, induces apoptosis independently of Bcl-2 in a variety of cancer cell models.
المؤلفون: Vervloessem T; KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut (LKI), Leuven, Belgium., Sasi BK; Molecular Hematology, International Center for Genetic Engineering & Biotechnology, Trieste, Italy., Xerxa E; Molecular Hematology, International Center for Genetic Engineering & Biotechnology, Trieste, Italy., Karamanou S; KU Leuven, Laboratory of Molecular Bacteriology, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium., Kale J; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada., La Rovere RM; KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut (LKI), Leuven, Belgium., Chakraborty S; Molecular Hematology, International Center for Genetic Engineering & Biotechnology, Trieste, Italy., Sneyers F; KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut (LKI), Leuven, Belgium., Vogler M; Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany., Economou A; KU Leuven, Laboratory of Molecular Bacteriology, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium., Laurenti L; Hematology Institute, Catholic University Hospital 'A. Gemelli', Rome, Italy., Andrews DW; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.; Sunnybrook Research Institute and Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada., Efremov DG; Molecular Hematology, International Center for Genetic Engineering & Biotechnology, Trieste, Italy. efremov@icgeb.org., Bultynck G; KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut (LKI), Leuven, Belgium. geert.bultynck@kuleuven.be.
المصدر: Cell death & disease [Cell Death Dis] 2020 Sep 17; Vol. 11 (9), pp. 769. Date of Electronic Publication: 2020 Sep 17.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101524092 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-4889 (Electronic) NLM ISO Abbreviation: Cell Death Dis Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group
مواضيع طبية MeSH: Apoptosis*, Anthraquinones/*pharmacology , Ethanolamines/*pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/*drug therapy , Lymphoma, Large B-Cell, Diffuse/*drug therapy , Proto-Oncogene Proteins c-bcl-2/*metabolism, Calcium/metabolism ; Cell Line, Tumor ; Cytosol/metabolism ; Dose-Response Relationship, Drug ; Down-Regulation ; Drug Screening Assays, Antitumor ; Humans ; Liposomes/metabolism ; Myeloid Cell Leukemia Sequence 1 Protein/metabolism ; Neoplasms/metabolism ; Phosphorylation ; Protein Conformation ; Protein Domains ; Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors ; Signal Transduction ; bcl-2-Associated X Protein/metabolism ; bcl-X Protein/metabolism
مستخلص: Several cancer cell types, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL) upregulate antiapoptotic Bcl-2 to cope with oncogenic stress. BH3 mimetics targeting Bcl-2's hydrophobic cleft have been developed, including venetoclax as a promising anticancer precision medicine for treating CLL patients. Recently, BDA-366 was identified as a small molecule BH4-domain antagonist that could kill lung cancer and multiple myeloma cells. BDA-366 was proposed to switch Bcl-2 from an antiapoptotic into a proapoptotic protein, thereby activating Bax and inducing apoptosis. Here, we scrutinized the therapeutic potential and mechanism of action of BDA-366 in CLL and DLBCL. Although BDA-366 displayed selective toxicity against both cell types, the BDA-366-induced cell death did not correlate with Bcl-2-protein levels and also occurred in the absence of Bcl-2. Moreover, although BDA-366 provoked Bax activation, it did neither directly activate Bax nor switch Bcl-2 into a Bax-activating protein in in vitro Bax/liposome assays. Instead, in primary CLL cells and DLBCL cell lines, BDA-366 inhibited the activity of the PI3K/AKT pathway, resulted in Bcl-2 dephosphorylation and reduced Mcl-1-protein levels without affecting the levels of Bcl-2 or Bcl-xL. Hence, our work challenges the current view that BDA-366 is a BH4-domain antagonist of Bcl-2 that turns Bcl-2 into a pro-apoptotic protein. Rather, our results indicate that other mechanisms beyond switching Bcl-2 conformation underlie BDA-366's cell-death properties that may implicate Mcl-1 downregulation and/or Bcl-2 dephosphorylation.
التعليقات: Comment in: Cell Death Differ. 2021 Mar;28(3):1130-1132. (PMID: 33469228)
References: Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019). (PMID: 30655609732530310.1038/s41580-018-0089-8)
Davids, M. S. & Letai, A. Targeting the B-cell lymphoma/leukemia 2 family in cancer. J. Clin. Oncol. 30, 3127–3135 (2012). (PMID: 22649144497923810.1200/JCO.2011.37.0981)
Potter, D. S. & Letai, A. To prime, or not to prime: that is the question. Cold Spring Harb. Symp. Quant. Biol. 81, 131–140 (2016). (PMID: 2781121210.1101/sqb.2016.81.030841)
Kale, J., Osterlund, E. J. & Andrews, D. W. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 25, 65–80 (2018). (PMID: 2914910010.1038/cdd.2017.186)
Rong, Y.-P. et al. The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP 3 receptor. Proc. Natl. Acad. Sci. USA. 106, 14397–14402 (2009).
Ivanova, H. et al. Bcl-2-protein family as modulators of IP 3 receptors and other organellar Ca 2+ channels. Cold Spring Harb. Perspect. Biol. 12, a035089 (2020).
Vervliet, T., Parys, J. B. & Bultynck, G. Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene 35, 5079–5092 (2016). (PMID: 2697324910.1038/onc.2016.31)
Montero, J. & Letai, A. Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ. 25, 56–64 (2018). (PMID: 2907709310.1038/cdd.2017.183)
Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013). (PMID: 2329163010.1038/nm.3048)
Ni Chonghaile, T. & Letai, A. Mimicking the BH3 domain to kill cancer cells. Oncogene 27(Suppl 1), S149–157 (2008). (PMID: 1964150010.1038/onc.2009.52)
Villalobos-Ortiz, M., Ryan, J., Mashaka, T. N., Opferman, J. T. & Letai, A. BH3 profiling discriminates on-target small molecule BH3 mimetics from putative mimetics. Cell Death Differ. 27, 999–1007 (2020). (PMID: 3133229610.1038/s41418-019-0391-9)
Vervloessem, T., La Rovere, R. & Bultynck, G. Antagonizing Bcl-2’s BH4 domain in cancer. Aging 7, 748–749 (2015). (PMID: 26525307463720110.18632/aging.100828)
Nougarède, A., Rimokh, R. & Gillet, G. BH4-mimetics and -antagonists: an emerging class of Bcl-2 protein modulators for cancer therapy. Oncotarget 9, 35291–35292 (2018). (PMID: 30450157621967410.18632/oncotarget.26250)
Distelhorst, C. W. Targeting Bcl-2-IP 3 receptor interaction to treat cancer: A novel approach inspired by nearly a century treating cancer with adrenal corticosteroid hormones. Biochim. Biophys. Acta Mol. Cell Res. 1865, 1795–1804 (2018). (PMID: 30053503634561110.1016/j.bbamcr.2018.07.020)
Distelhorst, C. W. & Bootman, M. D. Creating a new cancer therapeutic agent by targeting the interaction between Bcl-2 and IP 3 receptors. Cold Spring Harb. Perspect. Biol. 11, a035196 (2019).
Rong, Y.-P. et al. Targeting Bcl-2-IP 3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol. Cell 31, 255–265 (2008). (PMID: 18657507366009210.1016/j.molcel.2008.06.014)
Vervloessem, T. et al. Bcl-2 inhibitors as anti-cancer therapeutics: the impact of and on calcium signaling. Cell Calcium 70, 102–116 (2018). (PMID: 2870542110.1016/j.ceca.2017.05.014)
Zhong, F. et al. Induction of Ca 2+ -driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP 3 receptor interaction. Blood 117, 2924–2934 (2011). (PMID: 21193695306230210.1182/blood-2010-09-307405)
Akl, H. et al. IP 3 R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP 3 R-derived peptide targeting the BH4 domain of Bcl-2. Cell Death Dis. 4, e632 (2013). (PMID: 23681227367434910.1038/cddis.2013.140)
Greenberg, E. F. et al. Synergistic killing of human small cell lung cancer cells by the Bcl-2-inositol 1,4,5-trisphosphate receptor disruptor BIRD-2 and the BH3-mimetic ABT-263. Cell Death Dis. 6, e2034 (2015). (PMID: 26720343472089010.1038/cddis.2015.355)
Lavik, A. R. et al. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget 6, 27388–27402 (2015). (PMID: 26317541469499710.18632/oncotarget.4489)
Bittremieux, M. et al. Constitutive IP 3 signaling underlies the sensitivity of B-cell cancers to the Bcl-2/IP 3 receptor disruptor BIRD-2. Cell Death Differ. 26, 531–547 (2019). (PMID: 2989938210.1038/s41418-018-0142-3)
Han, B. et al. Small-molecule Bcl2 BH4 antagonist for lung cancer therapy. Cancer Cell 27, 852–863 (2015). (PMID: 26004684447047310.1016/j.ccell.2015.04.010)
Deng, J. et al. BCL2-BH4 antagonist BDA-366 suppresses human myeloma growth. Oncotarget 7, 27753–27763 (2016). (PMID: 27049723505368510.18632/oncotarget.8513)
Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2005). (PMID: 1616626210.1073/pnas.0506654102)
Chiorazzi, N. & Efremov, D. G. Chronic lymphocytic leukemia: a tale of one or two signals? Cell Res. 23, 182–185 (2013). (PMID: 2314779110.1038/cr.2012.152)
Mills, J. R. et al. mTORC1 promotes survival through translational control of Mcl-1. Proc. Natl Acad. Sci. USA 105, 10853–10858 (2008). (PMID: 1866458010.1073/pnas.0804821105)
Sasi, B. K. et al. Inhibition of SYK or BTK augments venetoclax sensitivity in SHP1-negative/BCL-2-positive diffuse large B-cell lymphoma. Leukemia 33, 2416–2428 (2019). (PMID: 3087278010.1038/s41375-019-0442-8)
Young, R. M., Phelan, J. D., Wilson, W. H. & Staudt, L. M. Pathogenic B-cell receptor signaling in lymphoid malignancies: New insights to improve treatment. Immunol. Rev. 291, 190–213 (2019). (PMID: 31402495669365110.1111/imr.12792)
Sun, H., Luo, G., Chen, D. & Xiang, Z. A comprehensive and system review for the pharmacological mechanism of action of rhein, an active anthraquinone ingredient. Front. Pharmacol. 7, 247 (2016). (PMID: 275827054987408)
de Souza Alves, C. C. et al. Inhibiting AKT phosphorylation employing non-cytotoxic anthraquinones ameliorates TH2 mediated allergic airways disease and rhinovirus exacerbation. PloS ONE 8, e79565 (2013). (PMID: 2422397010.1371/journal.pone.0079565)
Maurer, U., Charvet, C., Wagman, A. S., Dejardin, E. & Green, D. R. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol. Cell 21, 749–760 (2006). (PMID: 1654314510.1016/j.molcel.2006.02.009)
Longo, P. G. et al. The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 111, 846–855 (2008). (PMID: 1792852810.1182/blood-2007-05-089037)
Petlickovski, A. et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood 105, 4820–4827 (2005). (PMID: 1572813010.1182/blood-2004-07-2669)
Bojarczuk, K. et al. BCR signaling inhibitors differ in their ability to overcome Mcl-1-mediated resistance of CLL B cells to ABT-199. Blood 127, 3192–3201 (2016). (PMID: 2709578810.1182/blood-2015-10-675009)
Kerkhofs, M. et al. DLBCL cells with acquired resistance to venetoclax are not sensitized to BIRD-2 but can be resensitized to venetoclax through Bcl-XL inhibition. Biomolecules 10, 1081 (2020).
Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010). (PMID: 20164920282670910.1038/nature08822)
Low, I. C. C., Loh, T., Huang, Y., Virshup, D. M. & Pervaiz, S. Ser70 phosphorylation of Bcl-2 by selective tyrosine nitration of PP2A-B56δ stabilizes its antiapoptotic activity. Blood 124, 2223–2234 (2014). (PMID: 2508287810.1182/blood-2014-03-563296)
Song, T. et al. Bcl-2 phosphorylation confers resistance on chronic lymphocytic leukaemia cells to the BH3 mimetics ABT-737, ABT-263 and ABT-199 by impeding direct binding. Br. J. Pharmacol. 173, 471–483 (2016). (PMID: 26493374472841210.1111/bph.13370)
Liu, H., Mi, S., Li, Z., Hua, F. & Hu, Z.-W. Interleukin 17A inhibits autophagy through activation of PIK3CA to interrupt the GSK3B-mediated degradation of BCL2 in lung epithelial cells. Autophagy 9, 730–742 (2013). (PMID: 23514933366918210.4161/auto.24039)
Ruvolo, P. P., Deng, X., Carr, B. K. & May, W. S. A functional role for mitochondrial protein kinase Calpha in Bcl2 phosphorylation and suppression of apoptosis. J. Biol. Chem. 273, 25436–25442 (1998). (PMID: 973801210.1074/jbc.273.39.25436)
Yamamoto, K., Ichijo, H. & Korsmeyer, S. J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol. Cell. Biol. 19, 8469–8478 (1999). (PMID: 105675728495410.1128/MCB.19.12.8469)
Adem, J. et al. ERK1/2 has an essential role in B cell receptor- and CD40-induced signaling in an in vitro model of germinal center B cell selection. Mol. Immunol. 67, 240–247 (2015). (PMID: 2605474410.1016/j.molimm.2015.05.017)
Misuth, M. et al. The flashlights on a distinct role of protein kinase C δ: phosphorylation of regulatory and catalytic domain upon oxidative stress in glioma cells. Cell. Signal. 34, 11–22 (2017). (PMID: 2823768810.1016/j.cellsig.2017.02.020)
Jiang, J. B. et al. Novel non-cross resistant diaminoanthraquinones as potential chemotherapeutic agents. J. Med. Chem. 35, 4259–4263 (1992). (PMID: 144773010.1021/jm00101a001)
Kale, J. et al. Phosphorylation switches Bax from promoting to inhibiting apoptosis thereby increasing drug resistance. EMBO Rep. 19, e45235 (2018).
Economides, M. P., McCue, D., Borthakur, G. & Pemmaraju, N. Topoisomerase II inhibitors in AML: past, present, and future. Expert Opin. Pharmacother. 20, 1637–1644 (2019). (PMID: 3113621310.1080/14656566.2019.1621292)
Fisher, R. I. et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N. Engl. J. Med. 328, 1002–1006 (1993). (PMID: 768076410.1056/NEJM199304083281404)
Inoue-Yamauchi, A. et al. Targeting the differential addiction to anti-apoptotic BCL-2 family for cancer therapy. Nat. Commun. 8, 16078 (2017). (PMID: 28714472552005210.1038/ncomms16078)
Perciavalle, R. M. et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat. Cell Biol. 14, 575–583 (2012). (PMID: 22544066340194710.1038/ncb2488)
He, M. et al. Chidamide inhibits aerobic metabolism to induce pancreatic cancer cell growth arrest by promoting Mcl-1 degradation. PloS ONE 11, e0166896 (2016). (PMID: 27875574511978710.1371/journal.pone.0166896)
Coloff, J. L. et al. Akt-dependent glucose metabolism promotes Mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition. Cancer Res. 71, 5204–5213 (2011). (PMID: 21670080314842610.1158/0008-5472.CAN-10-4531)
Valentin, R., Grabow, S. & Davids, M. S. The rise of apoptosis: targeting apoptosis in hematologic malignancies. Blood 132, 1248–1264 (2018). (PMID: 3001263510.1182/blood-2018-02-791350)
Blombery, P. et al. Multiple BCL2 mutations cooccurring with Gly101Val emerge in chronic lymphocytic leukemia progression on venetoclax. Blood 135, 773–777 (2020). (PMID: 31951646714601510.1182/blood.2019004205)
Choudhary, G. S. et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis. 6, e1593 (2015). (PMID: 25590803466973710.1038/cddis.2014.525)
Guièze, R. et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. Cancer Cell 36, 369–384.e13 (2019). (PMID: 3154346310.1016/j.ccell.2019.08.005)
Thijssen, R. et al. Resistance to ABT-199 induced by microenvironmental signals in chronic lymphocytic leukemia can be counteracted by CD20 antibodies or kinase inhibitors. Haematologica 100, e302–e306 (2015). (PMID: 259573965004430)
Zelenetz, A. D. et al. Venetoclax plus R- or G-CHOP in non-Hodgkin lymphoma: results from the CAVALLI phase 1b trial. Blood 133, 1964–1976 (2019). (PMID: 30850381649751710.1182/blood-2018-11-880526)
Lavik, A. R. et al. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget 6, 27388–27402 (2015). (PMID: 26317541469499710.18632/oncotarget.4489)
Kale, J., Chi, X., Leber, B. & Andrews, D. Examining the molecular mechanism of bcl-2 family proteins at membranes by fluorescence spectroscopy. Methods Enzymol. 544, 1–23 (2014). (PMID: 2497428410.1016/B978-0-12-417158-9.00001-7)
معلومات مُعتمدة: FDN143312 Canada CIHR
المشرفين على المادة: 0 (Anthraquinones)
0 (BAX protein, human)
0 (BCL2 protein, human)
0 (BCL2L1 protein, human)
0 (BDA-366)
0 (Ethanolamines)
0 (Liposomes)
0 (MCL1 protein, human)
0 (Myeloid Cell Leukemia Sequence 1 Protein)
0 (Proto-Oncogene Proteins c-bcl-2)
0 (bcl-2-Associated X Protein)
0 (bcl-X Protein)
SY7Q814VUP (Calcium)
تواريخ الأحداث: Date Created: 20200918 Date Completed: 20210914 Latest Revision: 20210930
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7498462
DOI: 10.1038/s41419-020-02944-6
PMID: 32943617
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-4889
DOI:10.1038/s41419-020-02944-6