دورية أكاديمية

Th17/Treg imbalance in COPD development: suppressors of cytokine signaling and signal transducers and activators of transcription proteins.

التفاصيل البيبلوغرافية
العنوان: Th17/Treg imbalance in COPD development: suppressors of cytokine signaling and signal transducers and activators of transcription proteins.
المؤلفون: Silva LEF; Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil., Lourenço JD; Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil., Silva KR; Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil., Santana FPR; Laboratory of Studies in Pulmonary Inflammation, Department of Bioscience, Federal University of Sao Paulo, Diadema, SP, Brazil., Kohler JB; Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil., Moreira AR; Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil., Velosa APP; Laboratory of Extracelular Matrix, Department of Clinical Medicine, School of Medicine of University of Sao Paulo, Sao Paulo, SP, Brazil., Prado CM; Laboratory of Studies in Pulmonary Inflammation, Department of Bioscience, Federal University of Sao Paulo, Santos, SP, Brazil., Vieira RP; Post-Graduation Program in Bioengineering, Universidade Brasil, Sao Paulo, SP, Brazil., Aun MV; Host & Defense Unit, Faculdade Israelita de Ciências da Saúde Albert Einstein, Sao Paulo, SP, Brazil., Tibério IFLC; Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil., Ito JT; Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil., Lopes FDTQS; Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil. fernandadtqsl@gmail.com.; Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Av. Dr. Arnaldo 455 - room 1220, Sao Paulo, SP, 01246-903, Brazil. fernandadtqsl@gmail.com.
المصدر: Scientific reports [Sci Rep] 2020 Sep 17; Vol. 10 (1), pp. 15287. Date of Electronic Publication: 2020 Sep 17.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Cytokines/*immunology , Pulmonary Disease, Chronic Obstructive/*immunology , Signal Transduction/*immunology , T-Lymphocytes, Regulatory/*immunology , Th17 Cells/*immunology, Animals ; Disease Progression ; Down-Regulation/immunology ; Inflammation/immunology ; Male ; Mice ; Mice, Inbred C57BL ; STAT3 Transcription Factor/immunology ; Suppressor of Cytokine Signaling 1 Protein/immunology ; Suppressor of Cytokine Signaling 3 Protein/immunology
مستخلص: Th17/Treg imbalance contributes to chronic obstructive pulmonary disease (COPD) development and progression. However, intracellular signaling by suppressor of cytokine signaling (SOCS) 1 and SOCS3 and the proteins signal transducer and activator of transcription (STAT) 3 and STAT5 that orchestrate these imbalances are currently poorly understood. Thus, these proteins were investigated in C57BL/6 mice after exposure to cigarette smoke (CS) for 3 and 6 months. The expression of interleukin was measured by ELISA and the density of positive cells in peribronchovascular areas was quantified by immunohistochemistry. We showed that exposure to CS in the 3rd month first induced decreases in the numbers of STAT5+ and pSTAT5+ cells and the expression levels of TGF-β and IL-10. The increases in the numbers of STAT3+ and pSTAT3+ cells and IL-17 expression occurred later (6th month). These findings corroborate the increases in the number of SOCS1+ cells in both the 3rd and 6th months, with concomitant decreases in SOCS3+ cells at the same time points. Our results demonstrated that beginning with the initiation of COPD development, there was a downregulation of the anti-inflammatory response mediated by SOCS and STAT proteins. These results highlight the importance of intracellular signaling in Th17/Treg imbalance and the identification of possible targets for future therapeutic approaches.
References: 1Global Initiative for Chronic Obstructive Lung Disease 2020 (GOLD 2020). The Global Strategy for the Diagnosis, Management and Prevention of COPD (updated 2020).
Mathers, C. D. & Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, e442. https://doi.org/10.1371/journal.pmed.0030442 (2006). (PMID: 10.1371/journal.pmed.0030442)
Brusselle, G. G., Joos, G. F. & Bracke, K. R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 378, 1015–1026. https://doi.org/10.1016/S0140-6736(11)60988-4 (2011). (PMID: 10.1016/S0140-6736(11)60988-421907865)
Zhang, J. C. et al. TGF-beta/BAMBI pathway dysfunction contributes to peripheral Th17/Treg imbalance in chronic obstructive pulmonary disease. Sci. Rep. 6, 31911. https://doi.org/10.1038/srep31911 (2016). (PMID: 10.1038/srep31911275497384994021)
Eppert, B. L., Wortham, B. W., Flury, J. L. & Borchers, M. T. Functional characterization of T cell populations in a mouse model of chronic obstructive pulmonary disease. J. Immunol. 190, 1331–1340. https://doi.org/10.4049/jimmunol.1202442 (2013). (PMID: 10.4049/jimmunol.120244223264660)
Wang, H. et al. Imbalance of peripheral blood Th17 and Treg responses in patients with chronic obstructive pulmonary disease. Clin. Respir. J. 9, 330–341. https://doi.org/10.1111/crj.12147 (2015). (PMID: 10.1111/crj.1214724720797)
Zhao, P. et al. Restoring Th17/Treg balance via modulation of STAT3 and STAT5 activation contributes to the amelioration of chronic obstructive pulmonary disease by Bufei Yishen formula. J. Ethnopharmacol. 217, 152–162. https://doi.org/10.1016/j.jep.2018.02.023 (2018). (PMID: 10.1016/j.jep.2018.02.02329454913)
Sales, D. S. et al. Regulatory T-Cell distribution within lung compartments in COPD. COPD 14, 533–542. https://doi.org/10.1080/15412555.2017.1346069 (2017). (PMID: 10.1080/15412555.2017.134606928745532)
Cervilha, D. A. B. et al. The Th17/Treg cytokine imbalance in chronic obstructive pulmonary disease exacerbation in an animal model of cigarette smoke exposure and lipopolysaccharide challenge association. Sci. Rep. 9, 1921. https://doi.org/10.1038/s41598-019-38600-z (2019). (PMID: 10.1038/s41598-019-38600-z307608226374436)
Yoshimura, A., Suzuki, M., Sakaguchi, R., Hanada, T. & Yasukawa, H. SOCS, inflammation, and autoimmunity. Front. Immunol. 3, 20. https://doi.org/10.3389/fimmu.2012.00020 (2012). (PMID: 10.3389/fimmu.2012.00020225669043342034)
Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571–1579. https://doi.org/10.1182/blood-2006-02-004747 (2006). (PMID: 10.1182/blood-2006-02-004747166451711895505)
Zhou, L. et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453, 236–240. https://doi.org/10.1038/nature06878 (2008). (PMID: 10.1038/nature06878183680492597437)
Sheng, W. et al. STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation. Cell Res. 24, 1387–1402. https://doi.org/10.1038/cr.2014.154 (2014). (PMID: 10.1038/cr.2014.154254126604260352)
Yoshimura, A., Naka, T. & Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol. 7, 454–465. https://doi.org/10.1038/nri2093 (2007). (PMID: 10.1038/nri209317525754)
Yamamoto, K., Yamaguchi, M., Miyasaka, N. & Miura, O. SOCS-3 inhibits IL-12-induced STAT4 activation by binding through its SH2 domain to the STAT4 docking site in the IL-12 receptor beta2 subunit. Biochem. Biophys. Res. Commun. 310, 1188–1193. https://doi.org/10.1016/j.bbrc.2003.09.140 (2003). (PMID: 10.1016/j.bbrc.2003.09.14014559241)
Chen, W., Hong, Y. Q. & Meng, Z. L. Bioinformatics analysis of molecular mechanisms of chronic obstructive pulmonary disease. Eur. Rev. Med. Pharmacol. Sci. 18, 3557–3563 (2014). (PMID: 25535123)
Springer, J. et al. Transcriptional down-regulation of suppressor of cytokine signaling (SOCS)-3 in chronic obstructive pulmonary disease. J. Occup. Med. Toxicol. 8, 29. https://doi.org/10.1186/1745-6673-8-29 (2013). (PMID: 10.1186/1745-6673-8-29241387934015747)
Jin, Y. et al. Treg/IL-17 ratio and Treg differentiation in patients with COPD. PLoS ONE 9, e111044. https://doi.org/10.1371/journal.pone.0111044 (2014). (PMID: 10.1371/journal.pone.0111044253290734199736)
Li, H. et al. Disruption of th17/treg balance in the sputum of patients with chronic obstructive pulmonary disease. Am. J. Med. Sci. 349, 392–397. https://doi.org/10.1097/MAJ.0000000000000447 (2015). (PMID: 10.1097/MAJ.000000000000044725782336)
Duan, M. C. et al. Infiltration of IL-17-producing T cells and Treg cells in a mouse model of smoke-induced emphysema. Inflammation 39, 1334–1344. https://doi.org/10.1007/s10753-016-0365-8 (2016). (PMID: 10.1007/s10753-016-0365-827150336)
Chen, W. & Konkel, J. E. TGF-beta and “adaptive” Foxp3(+) regulatory T cells. J. Mol. Cell Biol. 2, 30–36. https://doi.org/10.1093/jmcb/mjp004 (2010). (PMID: 10.1093/jmcb/mjp00419648226)
Ohkura, N., Hamaguchi, M. & Sakaguchi, S. FOXP3+ regulatory T cells: control of FOXP3 expression by pharmacological agents. Trends Pharmacol. Sci. 32, 158–166. https://doi.org/10.1016/j.tips.2010.12.004 (2011). (PMID: 10.1016/j.tips.2010.12.00421237521)
de Lafaille, M. A. C. & Lafaille, J. J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor?. Immunity 30, 626–635. https://doi.org/10.1016/j.immuni.2009.05.002 (2009). (PMID: 10.1016/j.immuni.2009.05.00219464985)
Ito, J. T. et al. Th17/Treg imbalance in COPD progression: A temporal analysis using a CS-induced model. PLoS ONE 14, e0209351. https://doi.org/10.1371/journal.pone.0209351 (2019). (PMID: 10.1371/journal.pone.0209351306296266328193)
Passerini, L. et al. STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25- effector T cells. Int. Immunol. 20, 421–431. https://doi.org/10.1093/intimm/dxn002 (2008). (PMID: 10.1093/intimm/dxn00218270368)
Marie, J. C., Letterio, J. J., Gavin, M. & Rudensky, A. Y. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067. https://doi.org/10.1084/jem.20042276 (2005). (PMID: 10.1084/jem.20042276158093512213134)
Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517. https://doi.org/10.1146/annurev.immunol.021908.132710 (2009). (PMID: 10.1146/annurev.immunol.021908.13271019132915)
Ruwanpura, S. M. et al. IL-6/Stat3-driven pulmonary inflammation, but not emphysema, is dependent on interleukin-17A in mice. Respirology 19, 419–427. https://doi.org/10.1111/resp.12243 (2014). (PMID: 10.1111/resp.1224324506702)
Eickmeier, O. et al. Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function. Cytokine 50, 152–157. https://doi.org/10.1016/j.cyto.2010.02.004 (2010). (PMID: 10.1016/j.cyto.2010.02.00420181491)
Yew-Booth, L. et al. JAK-STAT pathway activation in COPD. Eur. Respir. J. 46, 843–845. https://doi.org/10.1183/09031936.00228414 (2015). (PMID: 10.1183/09031936.0022841426113679)
Eskandari-Nasab, E., Moghadampour, M. & Tahmasebi, A. Meta-analysis of risk association between interleukin-17A and F gene polymorphisms and inflammatory diseases. J. Interferon Cytokine Res. 37, 165–174. https://doi.org/10.1089/jir.2016.0088 (2017). (PMID: 10.1089/jir.2016.008828186427)
Ponce-Gallegos, M. A. et al. Genetic variants in IL17A and serum levels of IL-17A are associated with COPD related to tobacco smoking and biomass burning. Sci. Rep. 10, 784. https://doi.org/10.1038/s41598-020-57606-6 (2020). (PMID: 10.1038/s41598-020-57606-6319649476972744)
Croker, B. A. et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat. Immunol. 4, 540–545. https://doi.org/10.1038/ni931 (2003). (PMID: 10.1038/ni93112754505)
Lu, L. F. et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80–91. https://doi.org/10.1016/j.immuni.2008.11.010 (2009). (PMID: 10.1016/j.immuni.2008.11.010191443162654249)
Zhan, Y. et al. SOCS1 negatively regulates the production of Foxp3+ CD4+ T cells in the thymus. Immunol. Cell Biol. 87, 473–480. https://doi.org/10.1038/icb.2009.23 (2009). (PMID: 10.1038/icb.2009.2319381159)
Toledo, A. C. et al. Aerobic exercise attenuates pulmonary injury induced by exposure to cigarette smoke. Eur. Respir. J. 39, 254–264. https://doi.org/10.1183/09031936.00003411 (2012). (PMID: 10.1183/09031936.0000341121700603)
Margraf, L. R., Tomashefski, J. F. Jr., Bruce, M. C. & Dahms, B. B. Morphometric analysis of the lung in bronchopulmonary dysplasia. Am. Rev. Respir. Dis. 143, 391–400. https://doi.org/10.1164/ajrccm/143.2.391 (1991). (PMID: 10.1164/ajrccm/143.2.3911990959)
Weibel, E. R. Principles and methods for the morphometric study of the lung and other organs. Lab. Invest. 12, 131–155 (1963). (PMID: 13999512)
المشرفين على المادة: 0 (Cytokines)
0 (STAT3 Transcription Factor)
0 (Suppressor of Cytokine Signaling 1 Protein)
0 (Suppressor of Cytokine Signaling 3 Protein)
تواريخ الأحداث: Date Created: 20200918 Date Completed: 20201204 Latest Revision: 20210917
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7499180
DOI: 10.1038/s41598-020-72305-y
PMID: 32943702
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-020-72305-y