دورية أكاديمية

Novel determination of effective freeze-thaw cycles as drivers of ecosystem change.

التفاصيل البيبلوغرافية
العنوان: Novel determination of effective freeze-thaw cycles as drivers of ecosystem change.
المؤلفون: Boswell EP; Dep. of Soil Science, Univ. of Wisconsin-Madison, 1525 Observatory Dr., Madison, WI, 53706, USA., Thompson AM; Dep. of Biological Systems Engineering, Univ. of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA., Balster NJ; Dep. of Soil Science, Univ. of Wisconsin-Madison, 1525 Observatory Dr., Madison, WI, 53706, USA., Bajcz AW; Dep. of Biology, Drew Univ., 36 Madison Ave., Madison, NJ, 07940, USA.
المصدر: Journal of environmental quality [J Environ Qual] 2020 Mar; Vol. 49 (2), pp. 314-323. Date of Electronic Publication: 2020 Mar 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 0330666 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1537-2537 (Electronic) Linking ISSN: 00472425 NLM ISO Abbreviation: J Environ Qual Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : [Hoboken, NJ] : Wiley
Original Publication: Madison, WI : Published cooperatively by American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America
مواضيع طبية MeSH: Ecosystem* , Soil*, Climate Change ; Freezing ; Snow
مستخلص: Soil freeze-thaw cycles (FTCs) profoundly influence biophysical conditions and modify biogeochemical processes across many northern-hemisphere and alpine ecosystems. How FTCs will contribute to global processes in seasonally snow-covered ecosystems in the future is of particular importance as climate change progresses and winter snowpacks decline. Our understanding of these contributions is limited because there has been little consideration of inter- and intrayear variability in the characteristics of FTCs, in part due to a limited appreciation for which of these characteristics matters most with respect to a given biogeochemical process. Here, we introduce the concept of effective FTCs: those that are most likely linked to changes in key soil processes. We also propose a set of parameters to quantify and characterize effective FTCs using standard field soil temperature data. To put these proposed parameters into effective practice, we present FTCQuant, an R package of functions that quantifies FTCs based on a set of user-defined parameter criteria and, importantly, summarizes the individual characteristics of each FTC counted. To demonstrate the utility of these new concepts and tools, we applied the FTCQuant package to re-analyze data from two published studies to help explain over-winter changes to N 2 O emissions and wet-aggregate stability. We found that effective FTCs would be defined differently for each of these response variables and that effective FTCs provided a 76 and 33% increase in model fit for wet-aggregate stability and cumulative N 2 O emission, respectively, relative to conventional FTC quantification methods focusing on fluctuations around 0 °C. These results demonstrate the importance of identifying effective FTCs when scaling soil processes to regional or global levels. We hope our contributions will inform future deductions, hypothesis generation, and experimentation with respect to expected changes in freeze-thaw cycling globally.
(© 2020 The Authors. Journal of Environmental Quality © 2020 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.)
References: Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Dmitry A. Streletskiy, … Lantuit, H. (2019). Permafrost is warming at a global scale. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-08240-4.
Boswell, E. P., Balster, N. J., Bajcz, A. W., & Thompson, A. M. (2020). Soil aggregation returns to a set point despite seasonal response to snow manipulation. Geoderma, 357, 113954. https://doi.org/10.1016/j.geoderma.2019.113954.
Brown, P. J., & DeGaetano, A. T. (2011). A paradox of cooling winter soil surface temperatures in a warming northeastern United States. Agricultural and Forest Meteorology, 151(7), 947-956. https://doi.org/10.1016/j.agrformet.2011.02.014.
Cannell, G. H., & Gardner, W. H. (1959). Freezing-point depressions in stabilized soil aggregates, synthetic soil, and quartz sand. Soil Science Society of America Journal, 23(6), 418-422. https://doi.org/10.2136/sssaj1959.03615995002300060018x.
Dagesse, D. (2013). Freezing cycle effects on water stability of soil aggregates. Canadian Journal of Soil Science, 93, 473-483. https://doi.org/10.4141/CJSS2012-046.
Decker, K., Wang, D., Waite, C., & Scherbatskoy, T. (2003). Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont. Soil Science Society of America Journal, 67, 1234-1242. https://doi.org/10.2136/sssaj2003.1234.
Fitzhugh, R., Driscoll, C., Groffman, P., Tierney, G., Fahey, T., & Hardy, J. P. (2001). Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry, 56(2), 215-238. https://doi.org/10.1023/A:1013076609950.
Fouli, Y., Cade-Menun, B. J., & Cutforth, H. W. (2013). Freeze-thaw cycles and soil water content effects on infiltration rate of three Saskatchewan soils. Canadian Journal of Soil Science, 93(4), 485-496. https://doi.org/10.4141/cjss2012-060.
Gao, D., Zhang, L., Liu, J., Peng, B., Fan, Z., Dai, W., … Bai, E. (2018). Responses of terrestrial nitrogen pools and dynamics to different patterns of freeze-thaw cycle: A meta-analysis. Global Change Biology, 24(6), 2377-2389. https://doi.org/10.1111/gcb.14010.
Gavazov, K., Ingrisch, J., Hasibeder, R., Mills, R. T. E., Buttler, A., Gleixner, G., … Bahn, M. (2017). Winter ecology of a subalpine grassland: Effects of snow removal on soil respiration, microbial structure and function. Science of the Total Environment, 590-591, 316-324. https://doi.org/10.1016/j.scitotenv.2017.03.010.
Goldberg, S. D., Muhr, J., Borken, W., & Gebauer, G. (2008). Fluxes of climate-relevant trace gases between a Norway spruce forest soil and atmosphere during repeated freeze-thaw cycles in mesocosms. Journal of Plant Nutrition and Soil Science, 171(5), 729-739. https://doi.org/10.1002/jpln.200700317.
Han, C. L., Gu, Y. J., Kong, M., Hu, L. W., Jia, Y., Li, F. M., … Siddique, K. H. M. (2018). Responses of soil microorganisms, carbon and nitrogen to freeze-thaw cycles in diverse land-use types. Applied Soil Ecology, 124, 211-217. https://doi.org/10.1016/j.apsoil.2017.11.012.
Harrysson, S., Tilston, E. L., Sparrman, T., Schleucher, J., Nilsson, M., & Öquist, M. G. (2009). Contributions of matric and osmotic potentials to the unfrozen water content of frozen soils. Geoderma, 148(3-4), 392-398. https://doi.org/10.1016/j.geoderma.2008.11.007.
Henry, H. A. L. (2007). Soil freeze-thaw cycle experiments: Trends, methodological weaknesses and suggested improvements. Soil Biology & Biochemistry, 39(5), 977-986. https://doi.org/10.1016/j.soilbio.2006.11.017.
Henry, H. A. L. (2008). Climate change and soil freezing dynamics: Historical trends and projected changes. Climatic Change, 87(3-4), 421-434. https://doi.org/10.1007/s10584-007-9322-8.
Hosokawa, N., Isobe, K., Urakawa, R., Tateno, R., Fukuzawa, K., Watanabe, T., & Shibata, H. (2017). Soil freeze-thaw with root litter alters N transformations during the dormant season in soils under two temperate forests in northern Japan. Soil Biology and Biochemistry, 114, 270-278. https://doi.org/10.1016/j.soilbio.2017.07.025.
Koponen, H. T., Flöjt, L., & Martikainen, P. J. (2004). Nitrous oxide emissions from agricultural soils at low temperatures: A laboratory microcosm study. Soil Biology & Biochemistry, 36(5), 757-766. https://doi.org/10.1016/j.soilbio.2003.12.011.
Liu, P., Zha, T., Jia, X., Wang, B., Guo, X., Zhang, Y., … Peltola, H. (2016). Diurnal freeze-thaw cycles modify winter soil respiration in a desert shrub-land ecosystem. Forests, 7(8), 161. https://doi.org/10.3390/f7080161.
McCabe, G. J., Betancourt, J. L., & Feng, S. (2015). Variability in the start, end, and length of frost-free periods across the conterminous United States during the past century. International Journal of Climatology, 35(15), 4673-4680. https://doi.org/10.1002/joc.4315.
Oztas, T., & Fayetorbay, F. (2003). Effect of freezing and thawing processes on soil aggregate stability. Catena, 52(1), 1-8. https://doi.org/10.1016/S0341-8162(02)00177-7.
R Core Team. (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Ruan, L., & Robertson, G. P. (2017). Reduced snow cover increases wintertime nitrous oxide (N2O) emissions from an agricultural soil in the upper U.S. Midwest. Ecosystems, 20(5), 917-927. https://doi.org/10.1007/s10021-016-0077-9.
Sharma, S., Szele, Z., Schilling, R., Munch, J. C., & Schloter, M. (2006). Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Applied and Environmental Microbiology, 72(3), 2148-2154. https://doi.org/10.1128/AEM.72.3.2148-2154.2006.
Sharratt, B. S., Baker, D. G., Wall, D. B., Skaggs, R. H., & Ruschy, D. L. (1992). Snow depth required for near steady-state soil temperatures. Agricultural and Forest Meteorology, 57(4), 243-251. https://doi.org/10.1016/0168-1923(92)90121-J.
Song, Y., Zou, Y., Wang, G., & Yu, X. (2017). Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis. Soil Biology & Biochemistry, 109, 35-49. https://doi.org/10.1016/j.soilbio.2017.01.020.
Sorensen, P. O., Finzi, A. C., Giasson, M. A., Reinmann, A. B., Sanders-DeMott, R., & Templer, P. H. (2018). Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming. Soil Biology & Biochemistry, 116, 39-47. https://doi.org/10.1016/j.soilbio.2017.09.026.
Spaans, E., & Baker, J. (1996). The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic. Soil Science Society of America Journal, 60, 13-19. https://doi.org/10.2136/sssaj1996.03615995006000010005x.
Wagner-Riddle, C., Congreves, K. A., Abalos, D., Berg, A. A., Brown, S. E., Ambadan, J. T., … Tenuta, M. (2017). Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles. Nature Geoscience, 10, 279-283. https://doi.org/10.1038/NGEO2907.
Watanabe, K., & Osada, Y. (2017). Simultaneous measurement of unfrozen water content and hydraulic conductivity of partially frozen soil near 0 °C. Cold Regions Science and Technology, 142(August), 79-84. https://doi.org/10.1016/j.coldregions.2017.08.002.
Zhang, T. (2005). Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics, 43(4), RG4002. https://doi.org/10.1029/2004RG000157.
معلومات مُعتمدة: 1002505/WIS01770 National Institute of Food and Agriculture
المشرفين على المادة: 0 (Soil)
تواريخ الأحداث: Date Created: 20201005 Date Completed: 20201006 Latest Revision: 20201006
رمز التحديث: 20221213
DOI: 10.1002/jeq2.20053
PMID: 33016430
قاعدة البيانات: MEDLINE
الوصف
تدمد:1537-2537
DOI:10.1002/jeq2.20053