دورية أكاديمية

The role of nanohydroxyapatite on the morphological, physical, and biological properties of chitosan nanofibers.

التفاصيل البيبلوغرافية
العنوان: The role of nanohydroxyapatite on the morphological, physical, and biological properties of chitosan nanofibers.
المؤلفون: Sato TP; Department of Dental Materials and Prosthodontics, Institute of Science and Technology (IST), São Paulo State University (UNESP), Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, SP, 12245-200, Brazil., Rodrigues BVM; Laboratory of Biomedical Nanotechnology, Universidade Brasil, São Paulo, SP, 08230-030, Brazil.; Plasma and Processes Laboratory, Technological Institute of Aeronautics (ITA-CTA), São José dos Campos, SP, 12228-900, Brazil., Mello DCR; Department of Oral Pathology and Microbiology, IST, UNESP, São José dos Campos, SP, 12245-200, Brazil., Münchow EA; Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil., Ribeiro JS; Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA., Machado JPB; Associated Laboratory of Materials and Sensor (LAS), National Institute of Space Research (INPE), São José dos Campos, SP, 12201-970, Brazil., Vasconcellos LMR; Department of Oral Pathology and Microbiology, IST, UNESP, São José dos Campos, SP, 12245-200, Brazil., Lobo AO; Laboratory of Biomedical Nanotechnology, Universidade Brasil, São Paulo, SP, 08230-030, Brazil.; Interdisciplinary Laboratory for Advanced Materials, Federal University of Piauí, Teresina, PI, 64049-550, Brazil., Bottino MC; Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA. mbottino@umich.edu., Borges ALS; Department of Dental Materials and Prosthodontics, Institute of Science and Technology (IST), São Paulo State University (UNESP), Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, SP, 12245-200, Brazil. alexandre.borges@unesp.br.
المصدر: Clinical oral investigations [Clin Oral Investig] 2021 May; Vol. 25 (5), pp. 3095-3103. Date of Electronic Publication: 2020 Oct 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 9707115 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1436-3771 (Electronic) Linking ISSN: 14326981 NLM ISO Abbreviation: Clin Oral Investig
أسماء مطبوعة: Publication: Berlin : Springer-Verlag
Original Publication: Berlin : Springer, c1997-
مواضيع طبية MeSH: Chitosan*/pharmacology , Nanofibers*, Durapatite ; Polymers
مستخلص: Objectives: This study aimed to evaluate the effects of nanohydroxyapatite (nHAp) particles on the morphological, chemical, physical, and biological properties of chitosan electrospun nanofibers.
Materials and Methods: nHAp particles with a 1.67 Ca/P ratio were synthesized via the aqueous precipitation method, incorporated into chitosan polymer solution (0.5 wt%), and electrospun into nHAp-loaded fibers (ChHa fibers). Neat chitosan fibers (nHAp-free, Ch fibers) were used as the control. The electrospun fiber mats were characterized using morphological, topographical, chemical, thermal, and a range of biological (antibacterial, antibiofilm, cell viability, and alkaline phosphatase [ALP] activity) analyses. Data were analyzed using ANOVA and Tukey's test (α = 0.05).
Results: ChHa fibers demonstrated a bead-like morphology, with thinner (331 ± 110 nm) and smoother (Ra = 2.9 ± 0.3 μm) distribution as compared to the control fibers. Despite showing similar cell viability and ALP activity to Ch fibers, the ChHa fibers demonstrated greater antibacterial potential against most tested bacteria (except for P. intermedia), and higher antibiofilm activity against P. gingivalis biofilm.
Conclusions: The incorporation of nHAp particles did not jeopardize the overall morphology, topography, physical, and biological characteristics of the chitosan nanofibers.
Clinical Relevance: The combination of nHAp particles with chitosan can be used to engineer bioactive, electrospun composite nanofibers with potential applications in regenerative dentistry.
References: ASMT F2150 (2019) Standard guide for characterization and testing of biomaterial scaffolds used in regenerative medicine and tissue-engineered medical products.
Fernandez-Colino A, Wolf F, Keijdener H, Rutten S, Schmitz-Rode T, Jockenhoevel S, Rodriguez-Cabello JC, Mela P (2018) Macroporous click-elastin-like hydrogels for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 88:140–147. https://doi.org/10.1016/j.msec.2018.03.013. (PMID: 10.1016/j.msec.2018.03.01329636129)
Prieto EM, Page JM, Harmata AJ, Guelcher SA (2014) Injectable foams for regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:136–154. https://doi.org/10.1002/wnan.1248. (PMID: 10.1002/wnan.124824127230)
Ko E, Lee JS, Kim H, Yang SY, Yang D, Yang K, Lee J, Shin J, Yang HS, Ryu W, Cho SW (2018) Electrospun silk fibroin nanofibrous scaffolds with two-stage hydroxyapatite functionalization for enhancing the osteogenic differentiation of human adipose-derived mesenchymal stem cells. ACS Appl Mater Interfaces 10:7614–7625. https://doi.org/10.1021/acsami.7b03328. (PMID: 10.1021/acsami.7b0332828475306)
Pistone A, Iannazzo D, Celesti C, Scolaro C, Giofre SV, Romeo R and Visco A (2020) Chitosan/pamam/hydroxyapatite engineered drug release hydrogels with tunable rheological properties. Polymers (Basel) 12. doi: https://doi.org/10.3390/polym12040754.
Ramirez-Agudelo R, Scheuermann K, Gala-Garcia A, Monteiro APF, Pinzon-Garcia AD, Cortes ME, Sinisterra RD (2018) Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded doxycycline: effective anti-tumoral and antibacterial activity. Mater Sci Eng C Mater Biol Appl 83:25–34. https://doi.org/10.1016/j.msec.2017.08.012. (PMID: 10.1016/j.msec.2017.08.01229208285)
Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39:862–890. (PMID: 10.1016/j.progpolymsci.2013.06.002)
Bottino MC, Arthur RA, Waeiss RA, Kamocki K, Gregson KS, Gregory RL (2014) Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clin Oral Investig 18:2151–2158. https://doi.org/10.1007/s00784-014-1201-x. (PMID: 10.1007/s00784-014-1201-x245350744136969)
Frohbergh ME, Katsman A, Mondrinos MJ, Stabler CT, Hankenson KD, Oristaglio JT, Lelkes PI (2015) Osseointegrative properties of electrospun hydroxyapatite-containing nanofibrous chitosan scaffolds. Tissue Eng Part A 21:970–981. https://doi.org/10.1089/ten.TEA.2013.0789. (PMID: 10.1089/ten.TEA.2013.078925336062)
Munchow EA, Albuquerque MT, Zero B, Kamocki K, Piva E, Gregory RL, Bottino MC (2015) Development and characterization of novel zno-loaded electrospun membranes for periodontal regeneration. Dent Mater 31:1038–1051. https://doi.org/10.1016/j.dental.2015.06.004. (PMID: 10.1016/j.dental.2015.06.004261164144527962)
Munchow EA, Pankajakshan D, Albuquerque MT, Kamocki K, Piva E, Gregory RL, Bottino MC (2016) Synthesis and characterization of cao-loaded electrospun matrices for bone tissue engineering. Clin Oral Investig 20:1921–1933. https://doi.org/10.1007/s00784-015-1671-5. (PMID: 10.1007/s00784-015-1671-526612403)
Peng H, Yin Z, Liu H, Chen X, Feng B, Yuan H, Su B, Ouyang H, Zhang Y (2012) Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mmscs. Nanotechnology 23:485102. https://doi.org/10.1088/0957-4484/23/48/485102. (PMID: 10.1088/0957-4484/23/48/48510223128604)
Ifuku S (2014) Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules 19:18367–18380. https://doi.org/10.3390/molecules191118367. (PMID: 10.3390/molecules191118367253935986271128)
Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P (2013) Electrospun chitosan-based nanofiber mats loaded with garcinia mangostana extracts. Int J Pharm 452:333–343. https://doi.org/10.1016/j.ijpharm.2013.05.012. (PMID: 10.1016/j.ijpharm.2013.05.01223680732)
Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X (2006) A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J 42:3171–3179. (PMID: 10.1016/j.eurpolymj.2006.08.009)
Yang X, Chen X, Wang H (2009) Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds. Biomacromolecules 10:2772–2778. https://doi.org/10.1021/bm900623j. (PMID: 10.1021/bm900623j19743842)
Borges ALS, Munchow EA, de Oliveira Souza AC, Yoshida T, Vallittu PK, Bottino MC (2015) Effect of random/aligned nylon-6/mwcnt fibers on dental resin composite reinforcement. J Mech Behav Biomed Mater 48:134–144. https://doi.org/10.1016/j.jmbbm.2015.03.019. (PMID: 10.1016/j.jmbbm.2015.03.01925933169)
Liu Y, Liu Y, Liao N, Cui F, Park M, Kim HY (2015) Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles. Int J Biol Macromol 79:638–643. https://doi.org/10.1016/j.ijbiomac.2015.05.058. (PMID: 10.1016/j.ijbiomac.2015.05.05826047897)
Shahi RG, Albuquerque MTP, Munchow EA, Blanchard SB, Gregory RL, Bottino MC (2017) Novel bioactive tetracycline-containing electrospun polymer fibers as a potential antibacterial dental implant coating. Odontology 105:354–363. https://doi.org/10.1007/s10266-016-0268-z. (PMID: 10.1007/s10266-016-0268-z27585669)
Li Y, Liao C and Tjong SC (2019) Synthetic biodegradable aliphatic polyester nanocomposites reinforced with nanohydroxyapatite and/or graphene oxide for bone tissue engineering applications. Nanomaterials (Basel) 9. doi: https://doi.org/10.3390/nano9040590.
Chen ZG, Wang PW, Wei B, Mo XM, Cui FZ (2010) Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater 6:372–382. https://doi.org/10.1016/j.actbio.2009.07.024. (PMID: 10.1016/j.actbio.2009.07.02419632361)
Su X, Jing H, Yu W, Lei F, Wang R, Hu C, Li M, Lin T, Zhou H, Wang F, Liao L (2020) A bone matrix-simulating scaffold to alleviate replicative senescence of mesenchymal stem cells during long-term expansion. J Biomed Mater Res A 108:1955–1967. https://doi.org/10.1002/jbm.a.36958. (PMID: 10.1002/jbm.a.3695832323459)
Barbosa MC, Messmer NR, Brazil TR, Marciano FR, Lobo AO (2013) The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method. Mater Sci Eng C Mater Biol Appl 33:2620–2625. https://doi.org/10.1016/j.msec.2013.02.027. (PMID: 10.1016/j.msec.2013.02.02723623076)
Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7:2710–2714. https://doi.org/10.1021/bm060286l. (PMID: 10.1021/bm060286l17025342)
Gohi B, Zeng HY, Xu S, Zou KM, Liu B, Huang XL and Cao XJ (2019) Optimization of znal/chitosan supra-nano hybrid preparation as efficient antibacterial material. Int J Mol Sci 20. doi: https://doi.org/10.3390/ijms20225705.
Huang J, Cheng Y, Wu Y, Shi X, Du Y, Deng H (2019) Chitosan/tannic acid bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. Int J Biol Macromol 139:191–198. https://doi.org/10.1016/j.ijbiomac.2019.07.185. (PMID: 10.1016/j.ijbiomac.2019.07.18531374279)
Maniatopoulos C, Sodek J, Melcher AH (1988) Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 254:317–330. https://doi.org/10.1007/bf00225804. (PMID: 10.1007/bf002258043197089)
Prado RF, de Oliveira FS, Nascimento RD, de Vasconcellos LM, Carvalho YR, Cairo CA (2015) Osteoblast response to porous titanium and biomimetic surface: in vitro analysis. Mater Sci Eng C Mater Biol Appl 52:194–203. https://doi.org/10.1016/j.msec.2015.03.028. (PMID: 10.1016/j.msec.2015.03.02825953558)
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. (PMID: 10.1016/S0021-9258(19)52451-6)
Rumengan IFM, Suryanto E, Modaso R, Wullur S, Tallei TE, Limbong D (2014) Structural characterisitcs of chitin and chitosan isolated from the biomass of cultivated rotifer, brachionus rotundiformis. Int J Fish Aquat Sci 3:12–18.
Michelot A, Sarda S, Audin C, Deydier E, Manoury E, Poli R, Rey C (2015) Spectroscopic characterization of hydroxyapatite and nanocrystalline apatite with grafted aminopropyltriethoxysilane: Nature of silane-surface interaction. J Mater Sci 50:5746–5757. (PMID: 10.1007/s10853-015-9122-x)
Ziegler-Borowska M, Chelminiak D, Kaczmarek H (2015) Thermal stability of magnetic nanoparticles coated by blends of modified chitosan and poly(quaternary ammonium) salt. J Therm Anal Calorim 119:499–506. (PMID: 10.1007/s10973-014-4122-7)
Liu H, Peng H, Wu Y, Zhang C, Cai Y, Xu G, Li Q, Chen X, Ji J, Zhang Y, OuYang HW (2013) The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-bmp/smad signaling pathway in bmscs. Biomaterials 34:4404–4417. https://doi.org/10.1016/j.biomaterials.2013.02.048. (PMID: 10.1016/j.biomaterials.2013.02.04823515177)
Price RL, Ellison K, Haberstroh KM, Webster TJ (2004) Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res A 70:129–138. https://doi.org/10.1002/jbm.a.30073. (PMID: 10.1002/jbm.a.3007315174117)
Ying R, Wang H, Sun R, Chen K (2020) Preparation and properties of a highly dispersed nano-hydroxyapatite colloid used as a reinforcing filler for chitosan. Mater Sci Eng C Mater Biol Appl 110:110689. https://doi.org/10.1016/j.msec.2020.110689. (PMID: 10.1016/j.msec.2020.11068932204004)
Chatzipetros E, Yfanti Z, Christopoulos P, Donta C, Damaskos S, Tsiambas E, Tsiourvas D, Kalogirou EM, Tosios KI, Tsiklakis K (2020) Imaging of nano-hydroxyapatite/chitosan scaffolds using a cone beam computed tomography device on rat calvarial defects with histological verification. Clin Oral Investig 24:437–446. https://doi.org/10.1007/s00784-019-02939-4. (PMID: 10.1007/s00784-019-02939-431104110)
Ali S, Sangi L, Kumar N, Kumar B, Khurshid Z, Zafar MS (2020) Evaluating antibacterial and surface mechanical properties of chitosan modified dental resin composites. Technol Health Care 28:165–173. https://doi.org/10.3233/THC-181568. (PMID: 10.3233/THC-18156831594266)
Dragland IS, Wellendorf H, Kopperud H, Stenhagen I, Valen H (2019) Investigation on the antimicrobial activity of chitosan-modified zinc oxide-eugenol cement. Biomater Investig Dent 6:99–106. https://doi.org/10.1080/26415275.2019.1697621. (PMID: 10.1080/26415275.2019.1697621319988776964784)
Machado AHS, Garcia IM, Motta ASD, Leitune VCB, Collares FM (2019) Triclosan-loaded chitosan as antibacterial agent for adhesive resin. J Dent 83:33–39. https://doi.org/10.1016/j.jdent.2019.02.002. (PMID: 10.1016/j.jdent.2019.02.00230794843)
Zhou J, Xu Q, Fan C, Ren H, Xu S, Hu F, Wang L, Yang K, Ji Q (2019) Characteristics of chitosan-modified glass ionomer cement and their effects on the adhesion and proliferation of human gingival fibroblasts: an in vitro study. J Mater Sci Mater Med 30:39. https://doi.org/10.1007/s10856-019-6240-z. (PMID: 10.1007/s10856-019-6240-z30840153)
Ruan Y, Shen L, Zou Y, Qi Z, Yin J, Jiang J, Guo L, He L, Chen Z, Tang Z, Qin S (2015) Comparative genome analysis of prevotella intermedia strain isolated from infected root canal reveals features related to pathogenicity and adaptation. BMC Genomics 16:122. https://doi.org/10.1186/s12864-015-1272-3. (PMID: 10.1186/s12864-015-1272-3257654604349605)
Kirmanidou Y, Sidira M, Bakopoulou A, Tsouknidas A, Prymak O, Papi R, Choli-Papadopoulou T, Epple M, Michailidis N, Koidis P, Michalakis K (2019) Assessment of cytotoxicity and antibacterial effects of silver nanoparticle-doped titanium alloy surfaces. Dent Mater 35:e220–e233. https://doi.org/10.1016/j.dental.2019.06.003. (PMID: 10.1016/j.dental.2019.06.00331301809)
Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005. (PMID: 10.1016/j.jpha.2015.11.00529403965)
Yan Z, Huang M, Melander C, Kjellerup BV (2020) Dispersal and inhibition of biofilms associated with infections. J Appl Microbiol 128:1279–1288. https://doi.org/10.1111/jam.14491. (PMID: 10.1111/jam.1449131618796)
Geredew Kifelew L, Mitchell JG, Speck P (2019) Mini-review: efficacy of lytic bacteriophages on multispecies biofilms. Biofouling 35:472–481. https://doi.org/10.1080/08927014.2019.1613525. (PMID: 10.1080/08927014.2019.161352531144513)
Ueshima M, Tanaka S, Nakamura S, Yamashita K (2002) Manipulation of bacterial adhesion and proliferation by surface charges of electrically polarized hydroxyapatite. J Biomed Mater Res 60:578–584. https://doi.org/10.1002/jbm.10113. (PMID: 10.1002/jbm.1011311948516)
Dasgupta S, Banerjee SS, Bandyopadhyay A, Bose S (2010) Zn- and mg-doped hydroxyapatite nanoparticles for controlled release of protein. Langmuir 26:4958–4964. https://doi.org/10.1021/la903617e. (PMID: 10.1021/la903617e201318822862579)
Simon AT, Dutta D, Chattopadhyay A, Ghosh SS (2019) Copper nanocluster-doped luminescent hydroxyapatite nanoparticles for antibacterial and antibiofilm applications. ACS Omega 4:4697–4706. https://doi.org/10.1021/acsomega.8b03076. (PMID: 10.1021/acsomega.8b03076314596566648608)
Ciobanu CS, Iconaru SL, Chifiriuc MC, Costescu A, Le Coustumer P, Predoi D (2013) Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. Biomed Res Int 2013:916218–916210. https://doi.org/10.1155/2013/916218. (PMID: 10.1155/2013/91621823509801)
Basrani B, Lemonie C (2005) Chlorhexidine gluconate. Aust Endod J 31:48–52. https://doi.org/10.1111/j.1747-4477.2005.tb00221.x. (PMID: 10.1111/j.1747-4477.2005.tb00221.x16128251)
Lambert F, Bacevic M, Layrolle P, Schupbach P, Drion P, Rompen E (2017) Impact of biomaterial microtopography on bone regeneration: comparison of three hydroxyapatites. Clin Oral Implants Res 28:e201–e207. https://doi.org/10.1111/clr.12986. (PMID: 10.1111/clr.1298627770468)
Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72:126501. (PMID: 10.1088/0034-4885/72/12/126501)
Lopez FA, Merce LR, Alguacil FJ, Lopez-Delgado A (2008) A kinetic study on the thermal behavior of chitosan. J Therm Anal Calorim 91:633–669. (PMID: 10.1007/s10973-007-8321-3)
Nandakumar A, Yang L, Habibovic P, van Blitterswijk C (2010) Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir 26:7380–7387. https://doi.org/10.1021/la904406b. (PMID: 10.1021/la904406b20039599)
معلومات مُعتمدة: 2011/17877-7 and 2011/20345-7 FAPESP; 310973/2014-7 and 310659/2014-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Antimicrobial; Chitosan; Electrospinning; Regeneration; Regenerative dentistry; Scaffolds
المشرفين على المادة: 0 (Polymers)
9012-76-4 (Chitosan)
91D9GV0Z28 (Durapatite)
تواريخ الأحداث: Date Created: 20201013 Date Completed: 20210423 Latest Revision: 20210423
رمز التحديث: 20231215
DOI: 10.1007/s00784-020-03633-6
PMID: 33047204
قاعدة البيانات: MEDLINE
الوصف
تدمد:1436-3771
DOI:10.1007/s00784-020-03633-6