دورية أكاديمية

Postsynaptic activity of inhibitory neurons evokes hemodynamic fMRI responses.

التفاصيل البيبلوغرافية
العنوان: Postsynaptic activity of inhibitory neurons evokes hemodynamic fMRI responses.
المؤلفون: Poplawsky AJ; Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, United States., Iordanova B; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15203, United States., Vazquez AL; Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15203, United States., Kim SG; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 440-330, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-330, Korea., Fukuda M; Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, United States. Electronic address: mif5@pitt.edu.
المصدر: NeuroImage [Neuroimage] 2021 Jan 15; Vol. 225, pp. 117457. Date of Electronic Publication: 2020 Oct 16.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Academic Press Country of Publication: United States NLM ID: 9215515 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1095-9572 (Electronic) Linking ISSN: 10538119 NLM ISO Abbreviation: Neuroimage Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Orlando, FL : Academic Press, c1992-
مواضيع طبية MeSH: Brain/*diagnostic imaging , Cerebrovascular Circulation/*physiology , GABAergic Neurons/*physiology , Neurovascular Coupling/*physiology, Amino Acid Transport System X-AG/antagonists & inhibitors ; Animals ; Brain/physiology ; Cerebrovascular Circulation/drug effects ; Electric Stimulation ; Functional Neuroimaging ; GABA-B Receptor Agonists ; GABAergic Neurons/drug effects ; Laser-Doppler Flowmetry ; Magnetic Resonance Imaging ; Neural Inhibition ; Neurovascular Coupling/drug effects ; Nitric Oxide Synthase/antagonists & inhibitors ; Olfactory Bulb/cytology ; Rats ; Receptors, AMPA/antagonists & inhibitors ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors ; Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors
مستخلص: Functional MRI responses are localized to the synaptic sites of evoked inhibitory neurons, but it is unknown whether, or by what mechanisms, these neurons initiate functional hyperemia. Here, the neuronal origins of these hemodynamic responses were investigated by fMRI or local field potential and blood flow measurements during topical application of pharmacological agents when GABAergic granule cells in the rat olfactory bulb were synaptically targeted. First, to examine if postsynaptic activation of these inhibitory neurons was required for neurovascular coupling, we applied an NMDA receptor antagonist during cerebral blood volume-weighted fMRI acquisition and found that responses below the drug application site (up to ~1.5 mm) significantly decreased within ~30 min. Similarly, large decreases in granule cell postsynaptic activities and blood flow responses were observed when AMPA or NMDA receptor antagonists were applied. Second, inhibition of nitric oxide synthase preferentially decreased the initial, fast component of the blood flow response, while inhibitors of astrocyte-specific glutamate transporters and vasoactive intestinal peptide receptors did not decrease blood flow responses. Third, inhibition of GABA release with a presynaptic GABA B receptor agonist caused less reduction of neuronal and blood flow responses compared to the postsynaptic glutamate receptor antagonists. In conclusion, local hyperemia by synaptically-evoked inhibitory neurons was primarily driven by their postsynaptic activities, possibly through NMDA receptor-dependent calcium signaling that was not wholly dependent on nitric oxide.
Competing Interests: Declaration of Competing Interest The authors declare they have no competing financial interests.
(Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.)
References: Cereb Cortex. 2008 Oct;18(10):2318-30. (PMID: 18222935)
Nature. 2001 Jul 12;412(6843):150-7. (PMID: 11449264)
J Neurosci. 2006 Jun 28;26(26):6997-7006. (PMID: 16807329)
Brain Res. 1986 May 28;374(2):389-94. (PMID: 2424562)
Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3371-5. (PMID: 7724568)
Brain Res. 1997 Mar 7;750(1-2):25-40. (PMID: 9098526)
J Neurosci. 2011 Jul 6;31(27):9836-47. (PMID: 21734275)
Cell Rep. 2015 Jul 14;12(2):313-25. (PMID: 26146075)
Brain Res. 1969 Jun;14(1):157-72. (PMID: 5783107)
Nature. 2008 Jun 12;453(7197):869-78. (PMID: 18548064)
Magn Reson Med. 2003 Aug;50(2):263-74. (PMID: 12876702)
Neuroimage. 2014 May 15;92:312-21. (PMID: 24495813)
Exp Neurol. 1966 Jan;14(1):44-56. (PMID: 5900523)
Neuroscience. 2006 Oct 13;142(2):567-77. (PMID: 16887275)
J Cereb Blood Flow Metab. 2020 Jul;40(7):1427-1440. (PMID: 31418628)
J Cereb Blood Flow Metab. 1998 Nov;18(11):1178-83. (PMID: 9809506)
Brain Res Mol Brain Res. 2001 Aug 15;92(1-2):1-11. (PMID: 11483236)
J Comp Neurol. 2000 May 29;421(2):161-71. (PMID: 10813779)
J Cereb Blood Flow Metab. 2019 Mar;39(3):481-496. (PMID: 29072857)
J Neurosci. 2009 Feb 4;29(5):1424-33. (PMID: 19193889)
Neurochem Int. 1998 Oct;33(4):287-97. (PMID: 9840219)
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13940-5. (PMID: 14615590)
J Neurosci. 2012 Jun 6;32(23):7970-85. (PMID: 22674272)
J Histochem Cytochem. 1994 May;42(5):569-75. (PMID: 7512584)
Neuroimage. 2019 Aug 15;197:657-667. (PMID: 28822749)
Elife. 2016 Feb 02;5:. (PMID: 26836304)
Cereb Cortex. 2014 Nov;24(11):2908-19. (PMID: 23761666)
Cereb Cortex. 2018 Nov 1;28(11):4105-4119. (PMID: 30215693)
J Neurosci. 2006 Aug 16;26(33):8409-16. (PMID: 16914666)
Nat Neurosci. 2016 Apr;19(4):554-6. (PMID: 26950004)
Nat Neurosci. 2013 Jul;16(7):889-97. (PMID: 23749145)
J Neurophysiol. 1968 Nov;31(6):884-915. (PMID: 5710539)
J Cereb Blood Flow Metab. 2020 Oct;40(10):2010-2025. (PMID: 31645177)
J Neurosci. 2015 Apr 1;35(13):5284-92. (PMID: 25834053)
J Appl Physiol (1985). 2006 Mar;100(3):1059-64. (PMID: 16467392)
Trends Neurosci. 2008 Aug;31(8):392-400. (PMID: 18603310)
J Neurosci. 2008 Dec 31;28(53):14347-57. (PMID: 19118167)
J Neurosci. 2004 Oct 13;24(41):8940-9. (PMID: 15483113)
Microvasc Res. 2009 Jun;78(1):4-13. (PMID: 19285089)
Nat Methods. 2012 Jun;9(6):597-602. (PMID: 22561989)
Eur J Neurosci. 2000 Apr;12(4):1177-93. (PMID: 10762349)
Neuroimage. 2017 Apr 1;149:348-360. (PMID: 28163142)
J Neurosci. 2011 Feb 2;31(5):1579-82. (PMID: 21289165)
J Neurophysiol. 2007 Jan;97(1):296-306. (PMID: 17035366)
Neuron. 2000 Mar;25(3):625-33. (PMID: 10774730)
Biophys J. 2013 Nov 5;105(9):2046-54. (PMID: 24209849)
Neuron. 2006 Oct 19;52(2):335-45. (PMID: 17046695)
Neuron. 2018 Jul 25;99(2):362-375.e4. (PMID: 29937277)
Nat Commun. 2020 Jun 11;11(1):2954. (PMID: 32528069)
Nat Methods. 2011 Sep;8(9):745-52. (PMID: 21985008)
Neuroimage. 2019 Nov 1;201:116034. (PMID: 31326573)
J Neurosci. 2007 Jun 13;27(24):6452-60. (PMID: 17567806)
Eur J Neurosci. 1993 Dec 1;5(12):1684-94. (PMID: 7510206)
Neuron. 1998 Apr;20(4):749-61. (PMID: 9581766)
Neuron. 1991 Jul;7(1):91-100. (PMID: 2069816)
Elife. 2016 May 31;5:. (PMID: 27244241)
Science. 1980 Mar 28;207(4438):1473-5. (PMID: 7361098)
J Neurophysiol. 1999 Jul;82(1):489-94. (PMID: 10400976)
Brain Res. 1996 May 6;719(1-2):62-71. (PMID: 8782864)
Neuron. 2008 Jun 26;58(6):897-910. (PMID: 18579080)
J Neurosci. 1998 Sep 1;18(17):6790-802. (PMID: 9712650)
J Neurosci. 2003 Mar 15;23(6):2032-9. (PMID: 12657661)
J Neurosci. 2014 Apr 23;34(17):6040-6. (PMID: 24760863)
Nat Neurosci. 2000 Jul;3(7):661-9. (PMID: 10862698)
Neuron. 2002 Mar 28;34(1):115-26. (PMID: 11931746)
Neurosci Res. 2007 Feb;57(2):165-78. (PMID: 17134781)
J Neurosci. 2006 Mar 8;26(10):2673-83. (PMID: 16525046)
Nat Neurosci. 2012 Jun 24;15(8):1102-4. (PMID: 22729174)
Nat Neurosci. 2015 Feb;18(2):210-8. (PMID: 25531572)
Nat Neurosci. 2019 Jul;22(7):1061-1065. (PMID: 31209378)
Neuroreport. 1996 Jul 29;7(11):1851-5. (PMID: 8905679)
J Cereb Blood Flow Metab. 2015 Jun;35(6):922-32. (PMID: 25669905)
J Comp Neurol. 2015 Jun 1;523(8):1145-61. (PMID: 25420934)
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17570-5. (PMID: 19805126)
J Comp Neurol. 1989 Oct 15;288(3):401-13. (PMID: 2551935)
Nature. 2010 Jun 10;465(7299):788-92. (PMID: 20473285)
Nat Neurosci. 2006 Nov;9(11):1397-1403. (PMID: 17013381)
Am J Physiol. 1997 Sep;273(3 Pt 2):H1166-76. (PMID: 9321803)
J Cereb Blood Flow Metab. 2021 Apr;41(4):841-856. (PMID: 33736512)
J Physiol. 1978 Jun;279:569-88. (PMID: 671363)
Magn Reson Med. 1998 Dec;40(6):840-6. (PMID: 9840828)
Elife. 2020 Oct 05;9:. (PMID: 33016877)
Front Cell Neurosci. 2013 Oct 31;7:190. (PMID: 24198758)
J Cell Sci. 1970 Jul;7(1):125-55. (PMID: 5476853)
J Neurosci. 2015 Nov 18;35(46):15263-75. (PMID: 26586815)
FEBS Lett. 1993 Oct 25;333(1-2):203-6. (PMID: 7693510)
J Cereb Blood Flow Metab. 2008 Feb;28(2):221-31. (PMID: 17895909)
Neuroimage. 2014 May 1;91:237-51. (PMID: 24418506)
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3811-6. (PMID: 20133576)
J Cereb Blood Flow Metab. 2018 Apr;38(4):627-640. (PMID: 29372655)
J Neurosci. 2010 Mar 24;30(12):4285-94. (PMID: 20335464)
J Am Heart Assoc. 2014 Jun 12;3(3):e000787. (PMID: 24926076)
Nat Neurosci. 2007 Oct;10(10):1308-12. (PMID: 17828254)
Neuroimage. 2014 Jul 15;95:29-38. (PMID: 24675646)
Brain Res. 1978 Oct 13;154(2):301-6. (PMID: 687996)
J Physiol. 2001 Jun 15;533(Pt 3):773-85. (PMID: 11410634)
Nat Rev Neurosci. 2005 Jan;6(1):77-85. (PMID: 15611729)
J Neurosci Methods. 1989 Sep;29(3):261-5. (PMID: 2507830)
Cereb Cortex. 2007 Apr;17(4):942-50. (PMID: 16731882)
Neuroimage. 2008 Oct 15;43(1):1-9. (PMID: 18655837)
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15246-51. (PMID: 20696904)
Front Neural Circuits. 2014 Sep 03;8:98. (PMID: 25232305)
Science. 2013 Jan 11;339(6116):197-200. (PMID: 23307741)
J Cereb Blood Flow Metab. 2009 May;29(5):976-86. (PMID: 19337274)
Magn Reson Med. 1998 Apr;39(4):615-24. (PMID: 9543424)
J Neurosci. 2005 Mar 16;25(11):2917-24. (PMID: 15772351)
Neuron. 2017 Dec 20;96(6):1253-1263.e7. (PMID: 29224727)
Neuron. 2001 Dec 20;32(6):1165-79. (PMID: 11754845)
Proc Natl Acad Sci U S A. 2019 May 21;116(21):10229-10231. (PMID: 31061120)
J Neurophysiol. 1990 Sep;64(3):932-47. (PMID: 2230935)
J Neurophysiol. 1997 Aug;78(2):651-9. (PMID: 9307102)
J Neurosci. 1994 Mar;14(3 Pt 2):1834-55. (PMID: 8126575)
J Neurosci. 2000 Mar 15;20(6):2192-201. (PMID: 10704494)
Neuroimage. 2019 Oct 1;199:718-729. (PMID: 28502845)
Cereb Cortex. 2020 Apr 14;30(4):2452-2464. (PMID: 31746324)
Front Cell Neurosci. 2014 Jan 27;8:8. (PMID: 24478631)
Neurosci Biobehav Rev. 2019 Jan;96:174-181. (PMID: 30481531)
J Neurosci. 2000 Jul 1;20(13):5124-34. (PMID: 10864969)
Nat Neurosci. 2017 May;20(5):717-726. (PMID: 28319610)
J Physiol. 1998 Oct 15;512 ( Pt 2):555-66. (PMID: 9763643)
Brain Res. 1974 Jan 4;65(1):91-107. (PMID: 4359029)
Cell Rep. 2019 May 21;27(8):2249-2261.e7. (PMID: 31116972)
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8525-30. (PMID: 20413724)
J Cereb Blood Flow Metab. 2015 Oct;35(10):1579-86. (PMID: 26082013)
Front Pharmacol. 2012 Jun 15;3:105. (PMID: 22715327)
J Cereb Blood Flow Metab. 2007 Apr;27(4):741-54. (PMID: 16883353)
Nat Neurosci. 2016 Dec;19(12):1619-1627. (PMID: 27775719)
Nat Commun. 2017 Jan 31;8:14191. (PMID: 28139643)
معلومات مُعتمدة: RF1 NS116450 United States NS NINDS NIH HHS; R01 NS094404 United States NS NINDS NIH HHS; R01 EB003324 United States EB NIBIB NIH HHS; R01 NS117515 United States NS NINDS NIH HHS; R01 NS110564 United States NS NINDS NIH HHS; R01 NS119410 United States NS NINDS NIH HHS
فهرسة مساهمة: Keywords: BOLD; CBF; CBV; GABAergic neurons; Neurovascular coupling
المشرفين على المادة: 0 (Amino Acid Transport System X-AG)
0 (GABA-B Receptor Agonists)
0 (Receptors, AMPA)
0 (Receptors, N-Methyl-D-Aspartate)
0 (Receptors, Vasoactive Intestinal Peptide)
EC 1.14.13.39 (Nitric Oxide Synthase)
تواريخ الأحداث: Date Created: 20201018 Date Completed: 20210310 Latest Revision: 20240330
رمز التحديث: 20240330
مُعرف محوري في PubMed: PMC7818351
DOI: 10.1016/j.neuroimage.2020.117457
PMID: 33069862
قاعدة البيانات: MEDLINE
الوصف
تدمد:1095-9572
DOI:10.1016/j.neuroimage.2020.117457