دورية أكاديمية

Midkine rewires the melanoma microenvironment toward a tolerogenic and immune-resistant state.

التفاصيل البيبلوغرافية
العنوان: Midkine rewires the melanoma microenvironment toward a tolerogenic and immune-resistant state.
المؤلفون: Cerezo-Wallis D; Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Contreras-Alcalde M; Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Troulé K; Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Catena X; Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Mucientes C; Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Calvo TG; Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Cañón E; Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Tejedo C; Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Pennacchi PC; Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Hogan S; Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland., Kölblinger P; Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland., Tejero H; Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Chen AX; Program for Mathematical Genomics, Departament of Systems Biology, Departament of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY, USA., Ibarz N; Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO) and ProteoRed-ISCIII, Madrid, Madrid, Spain., Graña-Castro O; Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Martinez L; Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO) and ProteoRed-ISCIII, Madrid, Madrid, Spain., Muñoz J; Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Madrid, Spain., Ortiz-Romero P; Dermatology Service, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain., Rodriguez-Peralto JL; Instituto de Investigación i+12, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain.; Pathology Service, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain., Gómez-López G; Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Al-Shahrour F; Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain., Rabadán R; Program for Mathematical Genomics, Departament of Systems Biology, Departament of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY, USA., Levesque MP; Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland., Olmeda D; Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. dolmeda@cnio.es., Soengas MS; Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. msoengas@cnio.es.
المصدر: Nature medicine [Nat Med] 2020 Dec; Vol. 26 (12), pp. 1865-1877. Date of Electronic Publication: 2020 Oct 19.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Company Country of Publication: United States NLM ID: 9502015 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-170X (Electronic) Linking ISSN: 10788956 NLM ISO Abbreviation: Nat Med Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature Publishing Company
Original Publication: New York, NY : Nature Pub. Co., [1995-
مواضيع طبية MeSH: Carcinogenesis/*drug effects , Melanoma, Experimental/*therapy , Midkine/*genetics , Tumor Microenvironment/*genetics, Animals ; B7-H1 Antigen/antagonists & inhibitors ; B7-H1 Antigen/genetics ; CD8-Positive T-Lymphocytes/drug effects ; Gene Expression Regulation, Neoplastic/genetics ; Genetic Therapy ; Humans ; Melanoma, Experimental/genetics ; Melanoma, Experimental/pathology ; Mice ; Midkine/pharmacology ; NF-kappa B/genetics ; Programmed Cell Death 1 Receptor/antagonists & inhibitors ; Programmed Cell Death 1 Receptor/genetics ; Recombinant Proteins/genetics ; Recombinant Proteins/pharmacology ; Transcriptome/genetics
مستخلص: An open question in aggressive cancers such as melanoma is how malignant cells can shift the immune system to pro-tumorigenic functions. Here we identify midkine (MDK) as a melanoma-secreted driver of an inflamed, but immune evasive, microenvironment that defines poor patient prognosis and resistance to immune checkpoint blockade. Mechanistically, MDK was found to control the transcriptome of melanoma cells, allowing for coordinated activation of nuclear factor-κB and downregulation of interferon-associated pathways. The resulting MDK-modulated secretome educated macrophages towards tolerant phenotypes that promoted CD8 + T cell dysfunction. In contrast, genetic targeting of MDK sensitized melanoma cells to anti-PD-1/anti-PD-L1 treatment. Emphasizing the translational relevance of these findings, the expression profile of MDK-depleted tumors was enriched in key indicators of a good response to immune checkpoint blockers in independent patient cohorts. Together, these data reveal that MDK acts as an internal modulator of autocrine and paracrine signals that maintain immune suppression in aggressive melanomas.
التعليقات: Comment in: Nat Rev Cancer. 2021 Jan;21(1):4. (PMID: 33168967)
References: Spranger, S. & Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 18, 139–147 (2018). (PMID: 293264316685071)
Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010). (PMID: 203038782866629)
Herrscher, H. & Robert, C. Immune checkpoint inhibitors in melanoma in the metastatic, neoadjuvant, and adjuvant setting. Curr. Opin. Oncol. 32, 106–113 (2020). (PMID: 31876547)
Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019). (PMID: 307556906705396)
Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 25, 1916–1927 (2019). (PMID: 317924606898788)
Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e16 (2017). (PMID: 290331305685550)
Gide, T. N. et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy. Cancer Cell 35, 238–255.e6 (2019). (PMID: 30753825)
Chen, P. L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016). (PMID: 273017225082984)
Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014). (PMID: 254092604315319)
Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018). (PMID: 303884556410377)
Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018). (PMID: 301273936487502)
Neubert, N. et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci. Transl. Med. 10, eaan3311 (2018). (PMID: 296432295957531)
Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017). (PMID: 281174165480600)
Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018). (PMID: 296349437116508)
Olmeda, D. et al. Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature 546, 676–680 (2017). (PMID: 286582206005659)
Sorrelle, N., Dominguez, A. T. A. & Brekken, R. A. From top to bottom: midkine and pleiotrophin as emerging players in immune regulation. J. Leukoc. Biol. 102, 277–286 (2017). (PMID: 283563505505752)
Jones, D. R. Measuring midkine: the utility of midkine as a biomarker in cancer and other diseases. Br. J. Pharmacol. 171, 2925–2939 (2014). (PMID: 244607344055197)
Sakamoto, K. & Kadomatsu, K. Midkine in the pathology of cancer, neural disease, and inflammation. Pathol. Int. 62, 445–455 (2012). (PMID: 22726064)
Kadomatsu, K. The midkine family in cancer, inflammation and neural development. Nagoya J. Med. Sci. 67, 71–82 (2005). (PMID: 17375473)
Zhao, S. et al. Midkine upregulates MICA/B expression in human gastric cancer cells and decreases natural killer cell cytotoxicity. Cancer Immunol. Immunother. 61, 1745–1753 (2012). (PMID: 22415659)
Guo, X. et al. Midkine activation of CD8 + T cells establishes a neuron–immune–cancer axis responsible for low-grade glioma growth. Nat. Commun. 11, 2177 (2020). (PMID: 323585817195398)
Ohuchida, T. et al. Midkine protects hepatocellular carcinoma cells against TRAIL-mediated apoptosis through down-regulation of caspase-3 activity. Cancer 100, 2430–2436 (2004). (PMID: 15160348)
Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018). (PMID: 295677057391259)
Herradon, G., Ramos-Alvarez, M. P. & Gramage, E. Connecting metainflammation and neuroinflammation through the PTN–MK–RPTPβ/ζ axis: relevance in therapeutic development. Front. Pharmacol. 10, 377 (2019). (PMID: 310316256474308)
Weckbach, L. T., Preissner, K. T. & Deindl, E. The role of midkine in arteriogenesis, involving mechanosensing, endothelial cell proliferation, and vasodilation. Int. J. Mol. Sci. 19, 2559 (2018). (PMID: 6163309)
Weckbach, L. T. et al. The cytokine midkine supports neutrophil trafficking during acute inflammation by promoting adhesion via β 2 integrins (CD11/CD18). Blood 123, 1887–1896 (2014). (PMID: 24458438)
Masuda, T. et al. Growth factor midkine promotes T-cell activation through nuclear factor of activated T cells signaling and T H 1 cell differentiation in lupus nephritis. Am. J. Pathol. 187, 740–751 (2017). (PMID: 28183532)
TCGA Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015).
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) Hallmark gene set collection. Cell Syst. 1, 417–425 (2015). (PMID: 267710214707969)
Shimoni, Y. Association between expression of random gene sets and survival is evident in multiple cancer types and may be explained by sub-classification. PLoS Comput. Biol. 14, e1006026 (2018). (PMID: 294705205839591)
Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013). (PMID: 24113773)
Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018). (PMID: 296282905982584)
Weckbach, L. T., Muramatsu, T. & Walzog, B. Midkine in inflammation. ScientificWorldJournal 11, 2491–2505 (2011). (PMID: 222351803253530)
Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015). (PMID: 258228004739640)
Poh, A. R. & Ernst, M. Targeting macrophages in cancer: from bench to bedside. Front. Oncol. 8, 49 (2018). (PMID: 295940355858529)
Jewell, R. et al. The clinicopathological and gene expression patterns associated with ulceration of primary melanoma. Pigment Cell Melanoma Res. 28, 94–104 (2015). (PMID: 25220403)
Perrotta, C. et al. Nitric oxide generated by tumor-associated macrophages is responsible for cancer resistance to cisplatin and correlated with syntaxin 4 and acid sphingomyelinase inhibition. Front. Immunol. 9, 1186 (2018). (PMID: 298962025987706)
Liou, G.-Y. et al. The presence of interleukin-13 at pancreatic ADM/PanIN lesions alters macrophage populations and mediates pancreatic tumorigenesis. Cell Rep. 19, 1322–1333 (2017). (PMID: 285146535510483)
Meeth, K., Wang, J. X., Micevic, G., Damsky, W. & Bosenberg, M. W. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Res. 29, 590–597 (2016). (PMID: 272877235331933)
Szklarczyk, D. et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015). (PMID: 25352553)
Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010). (PMID: 203713452862057)
Dejonckheere, E., Vandenbroucke, R. E. & Libert, C. Matrix metalloproteinase8 has a central role in inflammatory disorders and cancer progression. Cytokine Growth Factor Rev. 22, 73–81 (2011). (PMID: 21388856)
Shabani, F., Farasat, A., Mahdavi, M. & Gheibi, N. Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm. Res. 67, 801–812 (2018). (PMID: 30083975)
Jones, S. A. & Jenkins, B. J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 18, 773–789 (2018). (PMID: 30254251)
Lachmann, A. et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26, 2438–2444 (2010). (PMID: 207096932944209)
Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009). (PMID: 192190272671489)
Enamorado, M. et al. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8 + T cells. Nat. Commun. 8, 16073 (2017). (PMID: 287144655520051)
Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017). (PMID: 286503385531419)
Curtsinger, J. M., Agarwal, P., Lins, D. C. & Mescher, M. F. Autocrine IFN-γ promotes naive CD8 T cell differentiation and synergizes with IFN-α to stimulate strong function. J. Immunol. 189, 659–668 (2012). (PMID: 22706089)
Orecchioni, M., Ghosheh, Y., Pramod, A. B. & Ley, K. Macrophage polarization: different gene signatures in M1(LPS + ) vs. classically and M2(LPS ) vs. alternatively activated macrophages. Front. Immunol. 10, 1084 (2019). (PMID: 311788596543837)
Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2019). (PMID: 30595452)
Ascierto, M. L. et al. Transcriptional mechanisms of resistance to anti-PD-1 therapy. Clin. Cancer Res. 23, 3168–3180 (2017). (PMID: 281936245474192)
Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016). (PMID: 269974804808437)
Van Sllen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).
Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018). (PMID: 294439606028240)
Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018). (PMID: 30115704)
Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018). (PMID: 303099156718162)
Gajewski, T., Schreiber, H. & Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013). (PMID: 240481234118725)
Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019). (PMID: 317232868008476)
Liersch, R. et al. Analysis of a novel highly metastatic melanoma cell line identifies osteopontin as a new lymphangiogenic factor. Int. J. Oncol. 41, 1455–1463 (2012). (PMID: 227975483583651)
Berghaus, L. J. et al. Innate immune responses of primary murine macrophage-lineage cells and RAW 264.7 cells to ligands of Toll-like receptors 2, 3, and 4. Comp. Immunol. Microbiol. Infect. Dis. 33, 443–454 (2010). (PMID: 19732955)
Olmeda, D. et al. Antimetastatic dsRNA mimics identified by live imaging of pathogenic neolymphangiogenesis. Preprint at bioRxiv https://doi.org/10.1101/2019.12.26.887943 (2019).
Graña, O., Rubio-Camarillo, M., Fdez-Riverola, F., Pisano, D. G. & Glez-Peña, D. Nextpresso: next generation sequencing expression analysis pipeline. Curr. Bioinformatics 13, 583–591 (2018).
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 3–7 (2009).
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 14, 7 (2013). (PMID: 233238313618321)
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016). (PMID: 271244524944528)
المشرفين على المادة: 0 (B7-H1 Antigen)
0 (CD274 protein, human)
0 (MDK protein, human)
0 (NF-kappa B)
0 (Programmed Cell Death 1 Receptor)
0 (Recombinant Proteins)
137497-38-2 (Midkine)
تواريخ الأحداث: Date Created: 20201020 Date Completed: 20210128 Latest Revision: 20220804
رمز التحديث: 20221213
DOI: 10.1038/s41591-020-1073-3
PMID: 33077955
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-170X
DOI:10.1038/s41591-020-1073-3