دورية أكاديمية

Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change.

التفاصيل البيبلوغرافية
العنوان: Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change.
المؤلفون: Daane JM; Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, United States of America.; Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, United States of America.; Department of Genetics, Harvard Medical School, Boston, MA, United States of America., Auvinet J; Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, United States of America., Stoebenau A; Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, United States of America., Yergeau D; Department of Biology, Northeastern University, Boston, MA, United States of America., Harris MP; Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, United States of America.; Department of Genetics, Harvard Medical School, Boston, MA, United States of America., Detrich HW 3rd; Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, United States of America.; Department of Biology, Northeastern University, Boston, MA, United States of America.
المصدر: PLoS genetics [PLoS Genet] 2020 Oct 27; Vol. 16 (10), pp. e1009173. Date of Electronic Publication: 2020 Oct 27 (Print Publication: 2020).
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Public Library of Science Country of Publication: United States NLM ID: 101239074 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7404 (Electronic) Linking ISSN: 15537390 NLM ISO Abbreviation: PLoS Genet Subsets: MEDLINE
أسماء مطبوعة: Original Publication: San Francisco, CA : Public Library of Science, c2005-
مواضيع طبية MeSH: Climate Change* , Evolution, Molecular*, Erythrocytes/*metabolism , Fishes/*genetics, Animals ; Antarctic Regions ; Fishes/metabolism ; Genome/genetics ; Oceans and Seas ; Oxygen/metabolism
مستخلص: In the frigid, oxygen-rich Southern Ocean (SO), Antarctic icefishes (Channichthyidae; Notothenioidei) evolved the ability to survive without producing erythrocytes and hemoglobin, the oxygen-transport system of virtually all vertebrates. Here, we integrate paleoclimate records with an extensive phylogenomic dataset of notothenioid fishes to understand the evolution of trait loss associated with climate change. In contrast to buoyancy adaptations in this clade, we find relaxed selection on the genetic regions controlling erythropoiesis evolved only after sustained cooling in the SO. This pattern is seen not only within icefishes but also occurred independently in other high-latitude notothenioids. We show that one species of the red-blooded dragonfish clade evolved a spherocytic anemia that phenocopies human patients with this disease via orthologous mutations. The genomic imprint of SO climate change is biased toward erythrocyte-associated conserved noncoding elements (CNEs) rather than to coding regions, which are largely preserved through pleiotropy. The drift in CNEs is specifically enriched near genes that are preferentially expressed late in erythropoiesis. Furthermore, we find that the hematopoietic marrow of icefish species retained proerythroblasts, which indicates that early erythroid development remains intact. Our results provide a framework for understanding the interactions between development and the genome in shaping the response of species to climate change.
Competing Interests: The authors have declared that no competing interests exist.
References: Cell Tissue Res. 1985;242(3):669-76. (PMID: 4075384)
Development. 2018 Jan 10;145(1):. (PMID: 29321181)
Blood. 2011 Jul 14;118(2):231-9. (PMID: 21622645)
Respir Physiol. 1984 Aug;57(2):201-11. (PMID: 6494646)
J Exp Biol. 2006 May;209(Pt 10):1791-802. (PMID: 16651546)
Blood. 2016 Jan 14;127(2):187-99. (PMID: 26537302)
Mol Biol Evol. 2019 Aug 1;36(8):1817-1830. (PMID: 31077321)
Nucleic Acids Res. 2014 Jan;42(Database issue):D980-5. (PMID: 24234437)
Mech Dev. 2001 Jun;104(1-2):105-11. (PMID: 11404085)
Nature. 2011 Feb 10;470(7333):250-4. (PMID: 21307939)
BMC Evol Biol. 2015 Jun 11;15:109. (PMID: 26062690)
Biol Open. 2018 Aug 28;7(8):. (PMID: 30097520)
Mol Biol Evol. 2017 Jun 1;34(6):1391-1402. (PMID: 28333345)
Nat Ecol Evol. 2017 Sep;1(9):1379-1384. (PMID: 29046532)
Experientia. 1992 May 15;48(5):473-5. (PMID: 1601112)
J Hist Biol. 1970 Fall;3:189-212. (PMID: 11609651)
Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
Mar Genomics. 2020 Feb;49:100724. (PMID: 31735579)
Methods Cell Biol. 2004;77:475-503. (PMID: 15602928)
Nat Biotechnol. 2010 Dec;28(12):1248-50. (PMID: 21139605)
Science. 2004 Sep 17;305(5691):1766-70. (PMID: 15375266)
Blood. 1951 Jan;6(1):39-60. (PMID: 14791599)
Nucleic Acids Res. 2015 Jul 1;43(W1):W7-14. (PMID: 25883146)
Dev Biol. 2005 Jul 1;283(1):97-112. (PMID: 15890331)
Nat Ecol Evol. 2019 Jul;3(7):1102-1109. (PMID: 31182814)
Mol Biol Evol. 2006 Nov;23(11):2008-16. (PMID: 16870682)
Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
Comp Biochem Physiol. 1970 May 15;34(2):457-71. (PMID: 5426570)
J Exp Biol. 2000 Apr;203(Pt 8):1287-97. (PMID: 10729278)
Cell Rep. 2012 Oct 25;2(4):817-23. (PMID: 23022484)
Science. 2001 Apr 27;292(5517):686-93. (PMID: 11326091)
Brief Bioinform. 2011 Jan;12(1):41-51. (PMID: 21278375)
Science. 1968 Jan 12;159(3811):203-4. (PMID: 5634911)
Mol Biol Evol. 2012 Mar;29(3):1071-80. (PMID: 22075115)
J Exp Biol. 2000 Apr;203(Pt 8):1277-86. (PMID: 10729277)
PLoS One. 2011;6(9):e22594. (PMID: 21949676)
Curr Opin Hematol. 2012 May;19(3):156-62. (PMID: 22406824)
Nucleic Acids Res. 2017 Jan 4;45(D1):D865-D876. (PMID: 27899602)
Am J Hum Genet. 2018 May 3;102(5):717-730. (PMID: 29727686)
Dis Model Mech. 2014 Feb;7(2):181-92. (PMID: 24271780)
Trends Ecol Evol. 2000 Jul;15(7):267-271. (PMID: 10856946)
Blood. 2011 Mar 31;117(13):e96-108. (PMID: 21270440)
J Exp Biol. 2019 Mar 21;222(Pt 6):. (PMID: 30765469)
Nat Ecol Evol. 2019 Mar;3(3):469-478. (PMID: 30804520)
Blood. 2013 Feb 7;121(6):e5-e13. (PMID: 23243273)
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3434-9. (PMID: 22331888)
Br J Haematol. 1999 Jan;104(1):2-13. (PMID: 10027705)
Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3420-4. (PMID: 9096409)
Bioinformatics. 2012 Oct 15;28(20):2689-90. (PMID: 22908216)
Novartis Found Symp. 1999;226:6-16; discussion 16-9. (PMID: 10645535)
Nat Biotechnol. 2010 May;28(5):495-501. (PMID: 20436461)
Science. 1987 Mar 6;235(4793):1156-67. (PMID: 17818978)
Wiley Interdiscip Rev Syst Biol Med. 2009 Nov-Dec;1(3):390-399. (PMID: 20052305)
Bioinformatics. 2019 Nov 1;35(22):4815-4817. (PMID: 31192356)
Nucleic Acids Res. 2016 Jan 4;44(D1):D746-52. (PMID: 26481351)
Physiol Biochem Zool. 2011 Jul-Aug;84(4):353-62. (PMID: 21743249)
Genome Res. 2010 Jan;20(1):110-21. (PMID: 19858363)
Biochim Biophys Acta. 2010 Feb;1804(2):410-21. (PMID: 19879980)
J Exp Biol. 2010 Aug 15;213(Pt 16):2865-72. (PMID: 20675556)
Database (Oxford). 2011 Jul 23;2011:bar030. (PMID: 21785142)
Trends Genet. 2009 Feb;25(2):74-81. (PMID: 19108930)
المشرفين على المادة: S88TT14065 (Oxygen)
تواريخ الأحداث: Date Created: 20201027 Date Completed: 20201231 Latest Revision: 20201231
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7660546
DOI: 10.1371/journal.pgen.1009173
PMID: 33108368
قاعدة البيانات: MEDLINE
الوصف
تدمد:1553-7404
DOI:10.1371/journal.pgen.1009173