دورية أكاديمية

Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production.

التفاصيل البيبلوغرافية
العنوان: Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production.
المؤلفون: Suthers PF; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA., Dinh HV; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA., Fatma Z; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA., Shen Y; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Chan SHJ; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA., Rabinowitz JD; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Zhao H; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champagne, Urbana, IL, USA., Maranas CD; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
المصدر: Metabolic engineering communications [Metab Eng Commun] 2020 Oct 08; Vol. 11, pp. e00148. Date of Electronic Publication: 2020 Oct 08 (Print Publication: 2020).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Elsevier B.V Country of Publication: Netherlands NLM ID: 101642117 Publication Model: eCollection Cited Medium: Internet ISSN: 2214-0301 (Electronic) Linking ISSN: 22140301 NLM ISO Abbreviation: Metab Eng Commun Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [Amsterdam] : Elsevier B.V., [2014]-
مستخلص: Many platform chemicals can be produced from renewable biomass by microorganisms, with organic acids making up a large fraction. Intolerance to the resulting low pH growth conditions, however, remains a challenge for the industrial production of organic acids by microorganisms. Issatchenkia orientalis SD108 is a promising host for industrial production because it is tolerant to acidic conditions as low as pH 2.0. With the goal to systematically assess the metabolic capabilities of this non-model yeast, we developed a genome-scale metabolic model for I. orientalis SD108 spanning 850 genes, 1826 reactions, and 1702 metabolites. In order to improve the model's quantitative predictions, organism-specific macromolecular composition and ATP maintenance requirements were determined experimentally and implemented. We examined its network topology, including essential genes and flux coupling analysis and drew comparisons with the Yeast 8.3 model for Saccharomyces cerevisiae . We explored the carbon substrate utilization and examined the organism's production potential for the industrially-relevant succinic acid, making use of the OptKnock framework to identify gene knockouts which couple production of the targeted chemical to biomass production. The genome-scale metabolic model iIsor 850 is a data-supported curated model which can inform genetic interventions for overproduction.
Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(© 2020 The Authors.)
References: BMC Syst Biol. 2015 Oct 26;9:72. (PMID: 26503450)
PLoS Comput Biol. 2010 Oct 28;6(10):e1000970. (PMID: 21060853)
Genome Biol. 2004;5(2):R7. (PMID: 14759257)
Metab Eng. 2010 Nov;12(6):499-509. (PMID: 20883813)
Nat Rev Microbiol. 2009 Feb;7(2):129-43. (PMID: 19116616)
Nucleic Acids Res. 2019 Jan 8;47(D1):D1102-D1109. (PMID: 30371825)
PLoS One. 2016 Jan 26;11(1):e0148031. (PMID: 26812499)
Biotechnol Biofuels. 2012 Sep 21;5(1):72. (PMID: 22998943)
Math Biosci. 2015 Apr;262:28-35. (PMID: 25619608)
Mol Biosyst. 2013 Feb 2;9(2):205-16. (PMID: 23172360)
Nat Protoc. 2010 Jan;5(1):93-121. (PMID: 20057383)
Bioresour Technol. 2013 Apr;133:555-62. (PMID: 23455228)
BMC Syst Biol. 2009 Mar 25;3:37. (PMID: 19321003)
Database (Oxford). 2013 Aug 09;2013:bat059. (PMID: 23935056)
Nucleic Acids Res. 2012 Jan;40(Database issue):D580-6. (PMID: 22140103)
Genome Res. 2004 Feb;14(2):301-12. (PMID: 14718379)
Nucleic Acids Res. 2020 Jan 8;48(D1):D402-D406. (PMID: 31696234)
PLoS Comput Biol. 2017 Apr 18;13(4):e1005494. (PMID: 28419089)
Antimicrob Agents Chemother. 1998 Oct;42(10):2645-9. (PMID: 9756770)
Metab Eng Commun. 2019 Aug 28;9:e00101. (PMID: 31720216)
PLoS Comput Biol. 2015 Aug 27;11(8):e1004321. (PMID: 26313928)
BMC Syst Biol. 2012 Jun 04;6:55. (PMID: 22663945)
Nucleic Acids Res. 2016 Jan 4;44(D1):D1214-9. (PMID: 26467479)
Bioinformatics. 2017 Nov 15;33(22):3603-3609. (PMID: 29036557)
Nat Biotechnol. 2008 Oct;26(10):1155-60. (PMID: 18846089)
Nucleic Acids Res. 2015 Jan;43(Database issue):D222-6. (PMID: 25414356)
Mol Syst Biol. 2011 Oct 25;7:543. (PMID: 22027554)
PLoS One. 2013;8(1):e54144. (PMID: 23349810)
BMC Syst Biol. 2008 Aug 07;2:71. (PMID: 18687109)
BMC Syst Biol. 2013 Dec 27;7:142. (PMID: 24369854)
Nucleic Acids Res. 2018 Jan 4;46(D1):D633-D639. (PMID: 29059334)
BMC Syst Biol. 2010 Oct 28;4:145. (PMID: 21029416)
BMC Syst Biol. 2012 Apr 04;6:24. (PMID: 22472172)
BMC Bioinformatics. 2005 Dec 23;6:308. (PMID: 16375763)
PLoS Comput Biol. 2010 Apr 15;6(4):e1000744. (PMID: 20419153)
Microb Cell Fact. 2012 Feb 23;11:27. (PMID: 22356827)
BMC Syst Biol. 2012 Jul 05;6:49. (PMID: 22631437)
Nucleic Acids Res. 2016 Jan 4;44(D1):D523-6. (PMID: 26527720)
Biotechnol J. 2010 Jul;5(7):716-25. (PMID: 20665644)
Biotechnol Bioeng. 2018 Sep;115(9):2232-2242. (PMID: 29896854)
BMC Bioinformatics. 2007 Jun 20;8:212. (PMID: 17584497)
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. (PMID: 30395287)
Nat Commun. 2019 Mar 22;10(1):1356. (PMID: 30902987)
Biotechnol J. 2010 Jul;5(7):705-15. (PMID: 20503221)
Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361. (PMID: 27899662)
Nucleic Acids Res. 2020 Jan 8;48(D1):D9-D16. (PMID: 31602479)
Nat Biotechnol. 2005 Dec;23(12):1509-15. (PMID: 16333295)
Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503. (PMID: 31691815)
Biotechnol Bioeng. 2019 Dec;116(12):3396-3408. (PMID: 31502665)
NPJ Syst Biol Appl. 2016 Mar 03;2:16005. (PMID: 28725468)
Bioinformatics. 2017 Nov 1;33(21):3387-3395. (PMID: 29036616)
Int J Antimicrob Agents. 2017 Nov;50(5):599-606. (PMID: 28669835)
Genome Res. 2003 Feb;13(2):244-53. (PMID: 12566402)
Metab Eng. 2020 May;59:87-97. (PMID: 32007615)
Eukaryot Cell. 2014 Jan;13(1):2-9. (PMID: 24243791)
Genome Res. 2004 Jul;14(7):1298-309. (PMID: 15197165)
Nucleic Acids Res. 2019 Jan 8;47(D1):D542-D549. (PMID: 30395242)
BMC Syst Biol. 2012 May 04;6:35. (PMID: 22558935)
BMC Syst Biol. 2013 Apr 30;7:36. (PMID: 23631471)
J Gen Appl Microbiol. 2014;60(3):112-8. (PMID: 25008167)
Elife. 2018 Mar 09;7:. (PMID: 29521624)
J Microbiol. 2007 Dec;45(6):521-7. (PMID: 18176535)
Biotechnol Prog. 2020 Sep;36(5):e3008. (PMID: 32329213)
PLoS Pathog. 2018 Jul 19;14(7):e1007138. (PMID: 30024981)
Eukaryot Cell. 2012 Oct;11(10):1300-1. (PMID: 23027839)
Mol Biol Cell. 2006 Dec;17(12):5094-104. (PMID: 17021250)
FEMS Yeast Res. 2008 Sep;8(6):939-54. (PMID: 18671746)
Appl Environ Microbiol. 1998 Feb;64(2):530-4. (PMID: 9464389)
Microb Cell Fact. 2014 Aug 27;13:121. (PMID: 25159171)
Ind Biotechnol (New Rochelle N Y). 2013 Aug;9(4):215-228. (PMID: 24678285)
Nat Biotechnol. 2010 Sep;28(9):977-82. (PMID: 20802497)
PLoS Comput Biol. 2009 Mar;5(3):e1000308. (PMID: 19282964)
Synth Syst Biotechnol. 2017 Nov 15;2(4):243-252. (PMID: 29552648)
J Vis Exp. 2013 Feb 23;(72):e50262. (PMID: 23462663)
Microb Cell Fact. 2010 Jul 01;9:50. (PMID: 20594333)
Metab Eng. 2003 Oct;5(4):264-76. (PMID: 14642354)
Biotechnol Bioeng. 2001 Nov 5;75(3):334-44. (PMID: 11590606)
Nat Biotechnol. 2010 Mar;28(3):245-8. (PMID: 20212490)
mSphere. 2019 Jun 26;4(3):. (PMID: 31243078)
Mol Syst Biol. 2009;5:320. (PMID: 19888215)
BMC Syst Biol. 2010 Dec 29;4:178. (PMID: 21190580)
Nat Biotechnol. 2020 Mar;38(3):272-276. (PMID: 32123384)
Metabolites. 2015 Sep 29;5(4):536-70. (PMID: 26426067)
Brief Bioinform. 2019 Jul 19;20(4):1085-1093. (PMID: 29447345)
Cell. 2015 May 21;161(5):971-987. (PMID: 26000478)
Nat Biotechnol. 2018 Jul 6;36(7):566-569. (PMID: 29979655)
Nat Biotechnol. 2014 May;32(5):447-52. (PMID: 24811519)
FEMS Yeast Res. 2017 Aug 1;17(5):. (PMID: 28899034)
Arch Biochem Biophys. 1997 Apr 15;340(2):338-46. (PMID: 9143339)
Biotechnol Bioeng. 2003 Dec 20;84(6):647-57. (PMID: 14595777)
PLoS One. 2012;7(12):e51535. (PMID: 23236514)
FEMS Yeast Res. 2009 Dec;9(8):1123-36. (PMID: 19566685)
Genome Res. 2005 Oct;15(10):1421-30. (PMID: 16204195)
Genome Res. 2004 Nov;14(11):2367-76. (PMID: 15520298)
Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314. (PMID: 30418610)
BMC Syst Biol. 2013 Aug 08;7:74. (PMID: 23927696)
فهرسة مساهمة: Keywords: Constraint-based modeling; Genome-scale model; Metabolic engineering; Non-model yeast
تواريخ الأحداث: Date Created: 20201102 Latest Revision: 20201103
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7586132
DOI: 10.1016/j.mec.2020.e00148
PMID: 33134082
قاعدة البيانات: MEDLINE
الوصف
تدمد:2214-0301
DOI:10.1016/j.mec.2020.e00148