دورية أكاديمية

Photobiomodulation enhances the Th1 immune response of human monocytes.

التفاصيل البيبلوغرافية
العنوان: Photobiomodulation enhances the Th1 immune response of human monocytes.
المؤلفون: de Castro MS; Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, MG, 37130-000, Brazil. maya.castro@outlook.com., Miyazawa M; Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, MG, 37130-000, Brazil., Nogueira ESC; Department of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, MG, 37130-000, Brazil., Chavasco JK; Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, MG, 37130-000, Brazil., Brancaglion GA; Central Analysis Laboratory (LACEN), Federal University of Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, MG, 37130-000, Brazil., Cerdeira CD; Department of Biochemistry, Institute of Biomedical Sciences, Federal University of Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, MG, 37130-000, Brazil., Nogueira DA; Institute of Exact Sciences, Federal University of Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, MG, 37130-000, Brazil., Ionta M; Department of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, MG, 37130-000, Brazil., Hanemann JAC; Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, MG, 37130-000, Brazil., Brigagão MRPL; Department of Biochemistry, Institute of Biomedical Sciences, Federal University of Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, MG, 37130-000, Brazil., Sperandio FF; Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, MG, 37130-000, Brazil.; Oral Medicine Oral Pathology Resident - Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
المصدر: Lasers in medical science [Lasers Med Sci] 2022 Feb; Vol. 37 (1), pp. 135-148. Date of Electronic Publication: 2020 Nov 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: England NLM ID: 8611515 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1435-604X (Electronic) Linking ISSN: 02688921 NLM ISO Abbreviation: Lasers Med Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Springer
Original Publication: London : Baillière Tindall, c1986-
مواضيع طبية MeSH: Lasers, Semiconductor* , Monocytes*, Cell Survival ; Humans ; Immunity ; Macrophages
مستخلص: This study aims to evaluate the effects of photobiomodulation (PBM) on human monocytes, assessing the oxidative burst and ultimate fungicidal potential of these cells, as well as the gene expression at the mRNA level of CD68, CD80, CD163, CD204, IL-6, TNF-α and IL-10 in derived macrophages. Primary cultures of human monocytes were irradiated with an InGaAlP (660 nm)/GaAlAs (780 nm) diode laser (parameters: 40 mW, 0.04 cm 2 , 1 W/cm 2 ; doses: 200, 400 and 600 J/cm 2 ). Cells were submitted to the chemiluminescence assay, and a microbicidal activity assay against Candida albicans was performed. Reactive oxygen species (ROS) and nitric oxide (NO) production were measured, and cell viability was assessed by the exclusion method using 0.2% Trypan blue reagent. Irradiated monocytes were cultured for 72 h towards differentiation into macrophages. Total RNA was extracted, submitted to reverse transcription and real-time PCR. The results were analysed by ANOVA and the Tukey test (α = 0.05). Irradiated monocytes revealed a significant increase in their intracellular and extracellular ROS (P < 0.001). The 660 nm wavelength and 400 J/cm 2 dose were the most relevant parameters (P < 0.001). The fungicidal capacity of the monocytes was shown to be greatly increased after PBM (P < 0.001). PBM increased the expression of TNF-α (P = 0.0302) and the production of NO (P < 0.05) and did not impair monocyte viability. PBM induces a pro-inflammatory Th1-driven response in monocytes and macrophages.
(© 2020. Springer-Verlag London Ltd., part of Springer Nature.)
References: Cerdeira CD, Brigagão MRL, Carli ML, Ferreira CS, Moraes GOI, Hadad H, Hanemann JAC, Hamblin MR, Sperandio FF (2016) Low-level laser therapy stimulates the oxidative burst in human neutrophils and increases their fungicidal capacity. J Biophotonics 9:1180–1188. https://doi.org/10.1002/jbio.201600035. (PMID: 10.1002/jbio.201600035272439105133186)
Eslamipour F, Motamedian SR, Bagheri F (2017) Ibuprofen and low-level laser therapy for pain control during fixed orthodontic therapy: a systematic review of randomized controlled trials and meta-analysis. J Contemp Dent Pract 18:527–533. (PMID: 10.5005/jp-journals-10024-2078)
Heidari M, Paknejad M, Jamali R, Nokhbatolfoghahaei H, Fekrazad R, Moslemi N (2017) Effect of laser photobiomodulation on wound healing and postoperative pain following free gingival graft: a split-mouth triple-blind randomized controlled clinical trial. J Photochem Photobiol B 172:109–114. https://doi.org/10.1016/j.jphotobiol.2017.05.022. (PMID: 10.1016/j.jphotobiol.2017.05.02228549319)
Karu T (1989) Photobiology of low-power laser effects. Health Phys 56:691–704. (PMID: 10.1097/00004032-198905000-00015)
Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4:337–361. https://doi.org/10.3934/biophy.2017.3.337. (PMID: 10.3934/biophy.2017.3.337287482175523874)
Burger E, Mendes AC, Bani GM, Brigagão MR, Santos GB, Malaquias LC, Chavasco JK, Verinaud LM, de Camargo ZP, Hamblin MR, Sperandio FF (2015) Low-level laser therapy to the mouse femur enhances the fungicidal response of neutrophils against Paracoccidioides brasiliensis. PLoS Negl Trop Dis 9:e0003541. https://doi.org/10.1371/journal.pntd.0003541. (PMID: 10.1371/journal.pntd.0003541256754314326423)
Hemvani N, Chitnis DS, Bhagwanani NS (2005) Helium-neon and nitrogen laser irradiation accelerates the phagocytic activity of human monocytes. Photomed Laser Surg 23:571–574. https://doi.org/10.1089/pho.2005.23.571. (PMID: 10.1089/pho.2005.23.57116356149)
Nathan CF, Root RK (1977) Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med 146:1648–1662. (PMID: 10.1084/jem.146.6.1648)
Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112:935–945. https://doi.org/10.1182/blood-2007. (PMID: 10.1182/blood-200718684880)
Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15:164–187. https://doi.org/10.1159/000136357. (PMID: 10.1159/000136357185118612776633)
Kalyanaraman B, Hardy M, Zielonka J (2016) A critical review of methodologies to detect reactive oxygen and nitrogen species stimulated by NADPH oxidase enzymes: implications in pesticide toxicity. Curr Pharmacol Rep 2:193–201. https://doi.org/10.1007/s40495-016-0063-0. (PMID: 10.1007/s40495-016-0063-0277744075070669)
Liu H, Colavitti R, Rovira II, Finkel T (2005) Redox-dependent transcriptional regulation. Circ Res 97:967–974. https://doi.org/10.1161/01.RES.0000188210.72062.10. (PMID: 10.1161/01.RES.0000188210.72062.1016284189)
Callaghan GA, Riordan C, Gilmore WS, McIntyre IA, Allen JM, Hannigan BM (1996) Reactive oxygen species inducible by low-intensity laser irradiation alter DNA synthesis in the haemopoietic cell line U937. Lasers Surg Med 19:201–206. https://doi.org/10.1002/(SICI)1096-9101(1996)19:2<201::AID-LSM12>3.0.CO;2-9. (PMID: 10.1002/(SICI)1096-9101(1996)19:2<201::AID-LSM12>3.0.CO;2-98887924)
Lindgård A, Hultén LM, Svensson L, Soussi B (2007) Irradiation at 634 nm releases nitric oxide from human monocytes. Lasers Med Sci 22:30–36. https://doi.org/10.1007/s10103-006-0419-5. (PMID: 10.1007/s10103-006-0419-517120165)
Silva IH, de Andrade SC, de Faria AB, Fonsêca DD, Gueiros LA, Carvalho AA, da Silva WT, de Castro RM, Leão JC (2016) Increase in the nitric oxide release without changes in cell viability of macrophages after laser therapy with 660 and 808 nm lasers. Lasers Med Sci 31:1855–1862. https://doi.org/10.1007/s10103-016-2061-1. (PMID: 10.1007/s10103-016-2061-127638147)
Chen CH, Wang CZ, Wang YH, Liao WT, Chen YJ, Kuo CH, Kuo HF, Hung CH (2014) Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification. Mediat Inflamm 2014:625048. https://doi.org/10.1155/2014/625048. (PMID: 10.1155/2014/625048)
de Brito Sousa K, Rodrigues MFSD, de Souza Santos D, Mesquita-Ferrari RA, Nunes FD, da Silva DFTDifferential expression of inflammatory and anti-inflammatory mediators by M1 and M2 macrophages after photobiomodulation with red or infrared lasers, Bussadori SK, Fernandes KPS (2019) . Lasers Med Sci https://doi.org/10.1007/s10103-019-02817-1.
Yin M, Shen J, Yu S, Fei J, Zhu X, Zhao J, Zhai L, Sadhukhan A, Zhou J (2019) Tumor-associated macrophages (TAMs): a critical activator in ovarian cancer metastasis. Onco Targets Ther 12:8687–8699. https://doi.org/10.2147/OTT.S216355. (PMID: 10.2147/OTT.S216355316954276814357)
Tarique AA, Logan J, Thomas E, Holt PG, Sly PD, Fantino E (2015) Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol 53:676–688. https://doi.org/10.1165/rcmb.2015-0012OC. (PMID: 10.1165/rcmb.2015-0012OC25870903)
Yaniv E, Hadar T, Shvero J, Tamir R, Nageris B (2009) KTP/532 YAG laser treatment for allergic rhinitis. Am J Rhinol Allergy 23:527–530. https://doi.org/10.2500/ajra.2009.23.3346. (PMID: 10.2500/ajra.2009.23.334619807988)
Fairweathera D, Cihakovab D (2009) Alternatively activated macrophages in infection and autoimmunity. J Autoimmun 33:222–230. https://doi.org/10.1016/j.jaut.2009.09.012. (PMID: 10.1016/j.jaut.2009.09.012)
Hultén LM, Holmström M, Soussi B (1999) Harmful singlet oxygen can be helpful. Free Radic Biol Med 27:1203–1207. (PMID: 10.1016/S0891-5849(99)00217-8)
Babior BM (1984) The respiratory burst of phagocytes. J Clin Invest 73:599–601. https://doi.org/10.1172/JCI111249. (PMID: 10.1172/JCI1112496323522425058)
Dahlgren C, Karlsson A, Bylund J (2007) Measurement of respiratory burst products generated by professional phagocytes. Methods Mol Biol 412:349–363. https://doi.org/10.1007/978-1-59745-467-4&#95;23. (PMID: 10.1007/978-1-59745-467-4_2318453123)
Silva DF, Mesquita-Ferrari RA, Fernandes KP, Raele MP, Wetter NU, Deana AM (2012) Effective transmission of light for media culture, plates and tubes. Photochem Photobiol 88:1211–1216. https://doi.org/10.1111/j.1751-1097.2012.01166.x. (PMID: 10.1111/j.1751-1097.2012.01166.x22540924)
Green JN, Winterbourn CC, Hampton MB (2007) Analysis of neutrophil bactericidal activity. Methods Mol Biol 412:319–332. https://doi.org/10.1007/978-1-62703-845-4&#95;19. (PMID: 10.1007/978-1-62703-845-4_1918453121)
Raggi F, Pelassa S, Pierobon D, Penco F, Gattorno M, Novelli F, Eva A, Varesio L, Giovarelli M, Bosco MC (2017) Regulation of human macrophage M1-M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells-1. Front Immunol 8:1097. https://doi.org/10.3389/fimmu.2017.01097. (PMID: 10.3389/fimmu.2017.01097289362115594076)
Jaguin M, Houlbert N, Fardel O, Lecureur V (2013) Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol 281:51–61. https://doi.org/10.1016/j.cellimm.2013.01.010. (PMID: 10.1016/j.cellimm.2013.01.01023454681)
Meirelles MN, Araujo TCJ, Souza W (1980) Interaction of epimastigote and trypomastigote forms of Trypanosoma cruzi with chicken macrophages in vitro. Parasitology 81:373–381. (PMID: 10.1017/S0031182000056109)
Ding J, Jin W, Chen C, Shao Z, Wu J (2012) Tumor associated macrophage × cancer cell hybrids may acquire cancer stem cell properties in breast cancer. PLoS One 7:e41942. https://doi.org/10.1371/journal.pone.0041942. (PMID: 10.1371/journal.pone.0041942228486683405038)
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034. (PMID: 10.1186/gb-2002-3-7-research0034)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Method Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.126211846609)
R Core Team (2016) R Foundation for Statistical Computing.
Ferreira EB, Cavalcanti PP, Nogueira DA (2013) R package version:1.1.2.
Pal G, Dutta A, Mitra K, Grace MS, Romanczyk TB, Wu X, Chakrabarti K, Anders J, Gorman E, Waynant RW, Tata DB (2007) Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes. J Photochem Photobiol B 86:252–261. https://doi.org/10.1016/j.jphotobiol.2006.12.001. (PMID: 10.1016/j.jphotobiol.2006.12.00117224276)
Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7:358–383. https://doi.org/10.2203/dose-response.09-027.Hamblin. (PMID: 10.2203/dose-response.09-027.Hamblin200116532790317)
Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy - an update. Dose-Response 9:602–618. https://doi.org/10.2203/dose-response.11-009.Hamblin. (PMID: 10.2203/dose-response.11-009.Hamblin224617633315174)
Ellis JA, Mayer SJ, Jones OT (1988) The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils. Biochem J 251:887–891. https://doi.org/10.1042/bj2510887. (PMID: 10.1042/bj251088728431661149085)
Tucureanu MM, Rebleanu D, Constantinescu CA, Deleanu M, Voicu G, Butoi E, Calin M, Manduteanu I (2017) Lipopolysaccharide-induced inflammation in monocytes/macrophages is blocked by liposomal delivery of Gi-protein inhibitor. Int J Nanomedicine 13:63–76. https://doi.org/10.2147/IJN.S150918. (PMID: 10.2147/IJN.S150918293178165743190)
Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511. https://doi.org/10.1038/nri1391. (PMID: 10.1038/nri139115229469)
Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414. (PMID: 10.1146/annurev.biochem.71.110601.13541412045108)
Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ, Hauschildt S (2011) LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 31:379–446. (PMID: 10.1615/CritRevImmunol.v31.i5.20)
Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van Krieken JH, Hartung T, Adema G, Kullberg BJ (2004) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172:3712–3718. (PMID: 10.4049/jimmunol.172.6.3712)
Netea MG, Van der Graaf C, Van der Meer JW, Kullberg BJ (2004) Recognition of fungal pathogens by toll-like receptors. Eur J Clin Microbiol Infect Dis 23:672–676. https://doi.org/10.1007/s10096-004-1192-7. (PMID: 10.1007/s10096-004-1192-715322932)
Farah CS, Saunus JM, Hu Y, Kazoullis A, Ashman RB (2009) Gene targeting demonstrates that inducible nitric oxide synthase is not essential for resistance to oral candidiasis in mice, or for killing of Candida albicans by macrophages in vitro. Oral Microbiol Immunol 24:83–88. https://doi.org/10.1111/j.1399-302X.2008.00462.x. (PMID: 10.1111/j.1399-302X.2008.00462.x19121076)
Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32:41–52. (PMID: 41268034126803)
Sperandio FF, Simoes A, Aranha AC, Correa L, Orsini Machado de Sousa SC (2010) Photodynamic therapy mediated by methylene blue dye in wound healing. Photomed Laser Surg 28:581–587. https://doi.org/10.1089/pho.2009.2601. (PMID: 10.1089/pho.2009.260120961226)
Sperandio FF, Simoes A, Correa L, Aranha AC, Giudice FS, Hamblin MR, Sousa SC (2015) Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. J Biophotonics 8:795–803. https://doi.org/10.1002/jbio.201400064. (PMID: 10.1002/jbio.20140006425411997)
Viegas VN, Abreu ME, Viezzer C, Machado DC, Filho MS, Silva DN, Pagnoncelli RM (2007) Effect of low-level laser therapy on inflammatory reactions during wound healing: comparison with meloxicam. Photomed Laser Surg 25:467–473. https://doi.org/10.1089/pho.2007.1098. (PMID: 10.1089/pho.2007.109818158747)
Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22:241–247. https://doi.org/10.1089/1549541041438623. (PMID: 10.1089/15495410414386231531573215315732)
Moriyama Y, Nguyen J, Akens M, Moriyama EH, Lilge L (2009) In vivo effects of low level laser therapy on inducible nitric oxide synthase. Lasers Surg Med 41:227–231. https://doi.org/10.1002/lsm.20745. (PMID: 10.1002/lsm.2074519291752)
Labonte AC, Tosello-Trampont AC, Hahn YS (2014) The role of macrophage polarization in infectious and inflammatory diseases. Mol Cell 37:275–285. https://doi.org/10.14348/molcells.2014.2374. (PMID: 10.14348/molcells.2014.2374)
Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. https://doi.org/10.1172/JCI59643. (PMID: 10.1172/JCI59643223780473287223)
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686. https://doi.org/10.1016/j.it.2004.09.015. (PMID: 10.1016/j.it.2004.09.01515530839)
Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483. https://doi.org/10.1146/annurev.immunol.021908.132532. (PMID: 10.1146/annurev.immunol.021908.13253219105661)
Colvin EK (2014) Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front Oncol 4:137. https://doi.org/10.3389/fonc.2014.00137. (PMID: 10.3389/fonc.2014.00137249364774047518)
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555. https://doi.org/10.1016/s1471-4906(02)02302-5. (PMID: 10.1016/s1471-4906(02)02302-512401408)
Homan JW, Steele AD, Martinand-Mari C, Rogers TJ, Henderson EE, Charubala R, Pfleiderer W, Reichenbach NL, Suhadolnik RJ (2002) Inhibition of morphine-potentiated HIV-1 replication in peripheral blood mononuclear cells with the nuclease-resistant 2-5A agonist analog, 2-5A(N6B). J Acquir Immune Defic Syndr 30:9–20. https://doi.org/10.1097/00042560-200205010-00002. (PMID: 10.1097/00042560-200205010-0000212048358)
Lagging M, Romero AI, Westin J, Norkrans G, Dhillon AP, Pawlotsky JM, Zeuzem S, von Wagner M, Negro F, Schalm SW, Haagmans BL, Ferrari C, Missale G, Neumann AU, Verheij-Hart E, Hellstrand K (2006) IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with HCV genotype 1 infection. Hepatology 44:1617–1625. https://doi.org/10.1002/hep.21407. (PMID: 10.1002/hep.2140717133471)
معلومات مُعتمدة: (Master`s Scholarship - Not Applicable) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: Candida albicans; Macrophages; Monocytes; Photobiomodulation; Reactive oxygen species; Th1 immune response
تواريخ الأحداث: Date Created: 20201106 Date Completed: 20220202 Latest Revision: 20220202
رمز التحديث: 20240628
DOI: 10.1007/s10103-020-03179-9
PMID: 33155162
قاعدة البيانات: MEDLINE
الوصف
تدمد:1435-604X
DOI:10.1007/s10103-020-03179-9