دورية أكاديمية

Scalable Substitutional Re-Doping and its Impact on the Optical and Electronic Properties of Tungsten Diselenide.

التفاصيل البيبلوغرافية
العنوان: Scalable Substitutional Re-Doping and its Impact on the Optical and Electronic Properties of Tungsten Diselenide.
المؤلفون: Kozhakhmetov A; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA., Schuler B; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.; nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland., Tan AMZ; Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA., Cochrane KA; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Nasr JR; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA., El-Sherif H; Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada., Bansal A; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA., Vera A; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA., Bojan V; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA., Redwing JM; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.; Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, PA, 16802, USA., Bassim N; Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada., Das S; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA., Hennig RG; Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA., Weber-Bargioni A; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Robinson JA; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.; Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, PA, 16802, USA.; Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA.
المصدر: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2020 Dec; Vol. 32 (50), pp. e2005159. Date of Electronic Publication: 2020 Nov 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 9885358 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4095 (Electronic) Linking ISSN: 09359648 NLM ISO Abbreviation: Adv Mater Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Sept. 3, 1997- : Weinheim : Wiley-VCH
Original Publication: Deerfield Beach, FL : VCH Publishers, 1989-
مستخلص: Reliable, controlled doping of 2D transition metal dichalcogenides will enable the realization of next-generation electronic, logic-memory, and magnetic devices based on these materials. However, to date, accurate control over dopant concentration and scalability of the process remains a challenge. Here, a systematic study of scalable in situ doping of fully coalesced 2D WSe 2 films with Re atoms via metal-organic chemical vapor deposition is reported. Dopant concentrations are uniformly distributed over the substrate surface, with precisely controlled concentrations down to <0.001% Re achieved by tuning the precursor partial pressure. Moreover, the impact of doping on morphological, chemical, optical, and electronic properties of WSe 2 is elucidated with detailed experimental and theoretical examinations, confirming that the substitutional doping of Re at the W site leads to n-type behavior of WSe 2 . Transport characteristics of fabricated back-gated field-effect-transistors are directly correlated to the dopant concentration, with degrading device performances for doping concentrations exceeding 1% of Re. The study demonstrates a viable approach to introducing true dopant-level impurities with high precision, which can be scaled up to batch production for applications beyond digital electronics.
(© 2020 Wiley-VCH GmbH.)
References: Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699.
M. Chhowalla, D. Jena, H. Zhang, Nat. Rev. Mater. 2016, 1, 16052.
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011, 6, 147.
S. J. Kim, K. Choi, B. Lee, Y. Kim, B. H. Hong, Annu. Rev. Mater. Res. 2015, 45, 63.
D. Jariwala, A. R. Davoyan, J. Wong, H. A. Atwater, ACS Photonics 2017, 4, 2962.
D. Akinwande, N. Petrone, J. Hone, Nat. Commun. 2014, 5, 5678.
X. Zhang, T. H. Choudhury, M. Chubarov, Y. Xiang, B. Jariwala, F. Zhang, N. Alem, G. C. Wang, J. A. Robinson, J. M. Redwing, Nano Lett. 2018, 18, 1049.
K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, J. Park, Nature 2015, 520, 656.
H. Yu, M. Liao, W. Zhao, G. Liu, X. J. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, K. Deng, S. Zhou, J. A. Shi, L. Gu, C. Shen, T. Zhang, L. Du, L. Xie, J. Zhu, W. Chen, R. Yang, D. Shi, G. Zhang, ACS Nano 2017, 11, 12001.
D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta I Morral, A. Radenovic, A. Kis, ACS Nano 2015, 9, 4611.
A. Kozhakhmetov, T. H. Choudhury, Z. Y. Al Balushi, M. Chubarov, J. M. Redwing, J. Cryst. Growth 2018, 486, 137.
Y. Lin, B. Jariwala, B. M. Bersch, K. Xu, Y. Nie, B. Wang, S. M. Eichfeld, X. Zhang, T. H. Choudhury, Y. Pan, C. M. Smyth, J. Li, K. Zhang, M. A. Haque, S. Fo, R. M. Feenstra, R. M. Wallace, K. Cho, S. K. Fullerton-shirey, J. M. Redwing, J. A. Robinson, ACS Nano 2018, 12, 965.
J. A. Robinson, APL Mater. 2018, 6, 058202.
C. Huyghebaert, T. Schram, Q. Smets, T. K. Agarwal, D. Verreck, S. Brems, A. Phommahaxay, D. Chiappe, S. E.l Kazzi, C. Lockhart de la Rosa, G. Arutchelvan, D. Cott, J. Ludwig, A. Gaur, S. Sutar, A. Leonhardt, D. Marinov, D. Lin, M. Caymax, I. Asselberghs, G. Pourtois, I. P. Radu, in 2018 IEEE International Electron Devices Meeting (IEDM), IEEE, Piscataway, NJ, USA 2018, https://doi.org/10.1109/IEDM.2018.8614679.
C. L. Lo, M. Catalano, A. Khosravi, W. Ge, Y. Ji, D. Y. Zemlyanov, L. Wang, R. Addou, Y. Liu, R. M. Wallace, M. J. Kim, Z. Chen, Adv. Mater. 2019, 31, 1902397.
C. L. Lo, M. Catalano, K. K. H. Smithe, L. Wang, S. Zhang, E. Pop, M. J. Kim, Z. Chen, npj 2D Mater. Appl. 2017, 1, 42.
D. Neumaier, S. Pindl, M. C. Lemme, Nat. Mater. 2019, 18, 525.
A. Kozhakhmetov, J. R. Nasr, F. Zhang, K. Xu, N. C. Briggs, R. Addou, R. Wallace, S. K. Fullerton-Shirey, M. Terrones, S. Das, J. A. Robinson, 2D Mater. 2020, 7, 015029.
K. Zhang, D. D. Deng, B. Zheng, Y. Wang, F. K. Perkins, N. C. Briggs, V. H. Crespi, J. A. Robinson, Adv. Mater. Interfaces 2020, 7, 2000856.
Y. Lei, D. Butler, M. C. Lucking, F. Zhang, T. Xia, K. Fujisawa, T. Granzier-Nakajima, R. Cruz-Silva, M. Endo, H. Terrones, M. Terrones, A. Ebrahimi, Sci. Adv. 2020, 6, eabc4250.
Y. Lei, K. Fujisawa, F. Zhang, N. Briggs, A. R. Aref, Y. T. Yeh, Z. Lin, J. A. Robinson, R. Rajagopalan, M. Terrones, ACS Appl. Energy Mater. 2019, 2, 8625.
V. O. Jimenez, Y. T. H. Pham, M. Liu, F. Zhang, V. Kalappattil, B. Muchharla, T. Eggers, D. L. Duong, M. Terrones, M.-H. Phan, ArXiv: 2007.01505, 2020.
S. Mouri, Y. Miyauchi, K. Matsuda, Nano Lett. 2013, 13, 5944.
H. Xu, S. Fathipour, E. W. Kinder, A. C. Seabaugh, S. K. Fullerton-Shirey, ACS Nano 2015, 9, 4900.
K. Zhang, S. Feng, J. Wang, A. Azcatl, N. Lu, N. Wang, C. Zhou, J. Lerach, V. Bojan, M. J. Kim, L. Chen, R. M. Wallace, M. Terrones, J. Zhu, J. A. Robinson, Nano Lett. 2015, 15, 6586.
H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, A. Javey, Nano Lett. 2013, 13, 1991.
C. H. Chen, C. L. Wu, J. Pu, M. H. Chiu, P. Kumar, T. Takenobu, L.-J. Li, 2D Mater. 2014, 1, 034001.
P. Zhao, D. Kiriya, A. Azcatl, C. Zhang, M. Tosun, Y. Liu, M. Hettick, J. S. Kang, S. Mcdonnell, S. Kc, J. Guo, K. Cho, R. M. Wallace, A. Javey, ACS Nano 2014, 8, 10808.
S. Wang, W. Zhao, F. Giustiniano, G. Eda, Phys. Chem. Chem. Phys. 2016, 18, 4304.
E. Kim, C. Ko, K. Kim, Y. Chen, J. Suh, S. G. Ryu, K. Wu, X. Meng, A. Suslu, S. Tongay, J. Wu, C. P. Grigoropoulos, Adv. Mater. 2016, 28, 341.
P. Luo, F. Zhuge, Q. Zhang, Y. Chen, L. Lv, Y. Huang, H. Li, T. Zhai, Nanoscale Horiz. 2019, 4, 26.
A. Klein, P. Dolatzoglou, M. Lux-Steiner, E. Bucher, Sol. Energy Mater. Sol. Cells 1997, 46, 175.
S. Y. Hu, M. C. Cheng, K. K. Tiong, Y. S. Huang, J. Phys.: Condens. Matter 2005, 17, 3575.
S. Das, M. Demarteau, A. Roelofs, Appl. Phys. Lett. 2015, 106, 173506.
R. Mukherjee, H. J. Chuang, M. R. Koehler, N. Combs, A. Patchen, Z. X. Zhou, D. Mandrus, Phys. Rev. Appl. 2017, 7, 034011.
F. Zhang, B. Zheng, A. Sebastian, H. Olson, M. Liu, K. Fujisawa, Y. T. H. Pham, V. O. Jimenez, V. Kalappattil, L. Miao, T. Zhang, R. Pendurthi, Y. Lei, A. L. Elías, Y. Wang, N. Alem, P. E. Hopkins, S. Das, V. H. Crespi, M.-H. Phan, M. Terrones, ArXiv: 2005.01965, 2020.
H. Gao, J. Suh, M. C. Cao, A. Y. Joe, F. Mujid, K. H. Lee, S. Xie, P. Poddar, J. U. Lee, K. Kang, P. Kim, D. A. Muller, J. Park, Nano Lett. 2020, 20, 4095.
S. J. Yun, D. L. Duong, D. M. Ha, K. Singh, T. L. Phan, W. Choi, Y. M. Kim, Y. H. Lee, Adv. Sci. 2020, 7, 1903076.
T. Zhang, K. Fujisawa, F. Zhang, M. Liu, M. C. Lucking, R. N. Gontijo, Y. Lei, H. Liu, K. Crust, T. Granzier-Nakajima, H. Terrones, A. L. Elías, M. Terrones, ACS Nano 2020, 14, 4326.
K. Zhang, B. M. Bersch, J. Joshi, R. Addou, C. R. Cormier, C. Zhang, K. Xu, N. C. Briggs, K. Wang, S. Subramanian, K. Cho, S. Fullerton-Shirey, R. M. Wallace, P. M. Vora, J. A. Robinson, Adv. Funct. Mater. 2018, 28, 1706950.
Y. Isobe, M. Tanaka, S. Yamanaka, M. Miyake, J. Less-Common Met. 1989, 152, 177.
J. R. Shallenberger, Surf. Sci. Spectra 2018, 25, 014001.
V. Kochat, A. Apte, J. A. Hachtel, H. Kumazoe, A. Krishnamoorthy, S. Susarla, J. C. Idrobo, F. Shimojo, P. Vashishta, R. Kalia, A. Nakano, C. S. Tiwary, Adv. Mater. 2017, 29, 1703754.
S. Jiang, M. Hong, W. Wei, L. Zhao, N. Zhang, Z. Zhang, P. Yang, N. Gao, X. Zhou, C. Xie, J. Shi, Y. Huan, L. Tong, J. Zhao, Q. Zhang, Q. Fu, Y. Zhang, Commun. Chem. 2018, 1, 17.
F. Zhang, Y. Lu, D. S. Schulman, T. Zhang, K. Fujisawa, Z. Lin, Y. Lei, A. L. Elias, S. Das, S. B. Sinnott, M. Terrones, Sci. Adv. 2019, 5, eaav5003.
E. Del Corro, H. Terrones, A. Elias, C. Fantini, S. Feng, M. A. Nguyen, T. E. Mallouk, M. Terrones, M. A. Pimenta, ACS Nano 2014, 8, 8497.
W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, G. Eda, Nanoscale 2013, 5, 9677.
W. Shi, M. L. Lin, Q. H. Tan, X. F. Qiao, J. Zhang, P. H. Tan, 2D Mater. 2016, 3, 025016.
J. Li, W. Su, F. Chen, L. Fu, S. Ding, K. Song, X. Huang, L. Zhang, J. Phys. Chem. C 2019, 123, 3900.
Q. Qian, Z. Zhang, K. J. Chen, Langmuir 2018, 34, 2882.
K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, J. Shan, Nat. Mater. 2013, 12, 207.
D. H. Lien, S. Z. Uddin, M. Yeh, M. Amani, H. Kim, J. W. Ager, E. Yablonovitch, A. Javey, Science 2019, 364, 468.
M. Chubarov, T. H. Choudhury, X. Zhang, J. M. Redwing, Nanotechnology 2018, 29, 055706.
J.-H. Yang, B. I. Yakobson, ArXiv: 1711.05094, 2017.
S. Barja, S. Refaely-Abramson, B. Schuler, D. Y. Qiu, A. Pulkin, S. Wickenburg, H. Ryu, M. M. Ugeda, C. Kastl, C. Chen, C. Hwang, A. Schwartzberg, S. Aloni, S. K. Mo, D. F. Ogletree, M. F. Crommie, O. V. Yazyev, S. G. Louie, J. B. Neaton, A. Weber-Bargioni, Nat. Commun. 2019, 10, 3382.
B. Schuler, D. Y. Qiu, S. Refaely-Abramson, C. Kastl, C. T. Chen, S. Barja, R. J. Koch, D. F. Ogletree, S. Aloni, A. M. Schwartzberg, J. B. Neaton, S. G. Louie, A. Weber-Bargioni, Phys. Rev. Lett. 2019, 123, 076801.
B. Schuler, J. H. Lee, C. Kastl, K. A. Cochrane, C. T. Chen, S. Refaely-Abramson, S. Yuan, E. Van Veen, R. Roldán, N. J. Borys, R. J. Koch, S. Aloni, A. M. Schwartzberg, D. F. Ogletree, J. B. Neaton, A. Weber-Bargioni, ACS Nano 2019, 13, 10520.
M. Aghajanian, B. Schuler, K. A. Cochrane, J. H. Lee, C. Kastl, J. B. Neaton, A. Weber-Bargioni, A. A. Mostofi, J. Lischner, Phys. Rev. B 2020, 101, 081201(R).
K. A. Cochrane, T. Zhang, A. Kozhakhmetov, J. H. Lee, F. Zhang, C. Dong, J. B. Neaton, J. A. Robinson, M. Terrones, A. W. Bargioni, B. Schuler, 2D Mater. 2020, 7, 031003.
S. Das, J. Appenzeller, Appl. Phys. Lett. 2013, 103, 103501.
X. Zhang, F. Zhang, Y. Wang, D. S. Schulman, T. Zhang, A. Bansal, N. Alem, S. Das, V. H. Crespi, M. Terrones, J. M. Redwing, ACS Nano 2019, 13, 3341.
D. S. Schulman, A. J. Arnold, S. Das, Chem. Soc. Rev. 2018, 47, 3037.
J. R. Nasr, D. S. Schulman, A. Sebastian, M. W. Horn, S. Das, Adv. Mater. 2019, 31, 1806020.
J. Hwang, C. Zhang, Y. S. Kim, R. M. Wallace, K. Cho, Sci. Rep. 2020, 10, 4938.
J. Y. Noh, H. Kim, M. Park, Y. S. Kim, Phys. Rev. B 2015, 92, 115431.
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
M. Methfessel, A. T. Paxton, Phys. Rev. B 1989, 40, 3616.
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller, Nat. Mater. 2009, 8, 203.
F. Zhang, C. Erb, L. Runkle, X. Zhang, N. Alem, Nanotechnology 2018, 29, 025602.
R. Kilaas, J. Microsc. 1998, 190, 45.
D. R. G. Mitchell, Microsc. Res. Tech. 2008, 71, 588.
معلومات مُعتمدة: 1539916 NSF; 1453924 NSF; DMR-1539916 NSF; DMR-1748464 NSF; OAC-1740251 NSF; Office of Science; Basic Energy Sciences; DE-AC02-05CH11231 U.S. Department of Energy; University of California
فهرسة مساهمة: Keywords: 2D materials; back-end-of-line compatible temperatures; doping; metal-organic chemical vapor deposition; tungsten diselenide
تواريخ الأحداث: Date Created: 20201110 Latest Revision: 20201216
رمز التحديث: 20221213
DOI: 10.1002/adma.202005159
PMID: 33169451
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4095
DOI:10.1002/adma.202005159